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Abstract We identify autoecological traits of bird spe-
cies that influence the accuracy of predictive models of
species distribution based on census data obtained from
stratified sampling. These models would serve as a
complementary approach to the development of re-
gional bird atlases. We model the winter bird abundance
of 64 terrestrial bird species in 77 census plots in Central
Spain (Madrid province), using regression tree analyses.
The predicted distribution of species density derived
from statistical models (birds/10 ha) was compared with
the published relative abundances depicted by a very
accurate regional atlas of wintering birds (birds observed
per 10 h). Statistical models explained an average of
41.7% of the original deviance observed in the local bird
distribution (range 19.6–79.3%). Significant associations
between observed relative abundances (atlas data) and
predicted average densities in 1·1 km squares within
10·10 km UTMs were attained for 44 out of 64 species.
Interspecific discrepancies between predicted and ob-
served distribution maps decreased with between-year
constancy in regional bird distribution and the degree of
ecological specialization of species. Therefore, statistical
modeling using census localities allowed us to depict
geographical variations in bird abundance that were
similar to those in the quantitative atlas maps. Never-
theless, bird distributions derived from statistical models
are less reproducible in some species than in others,
depending on their autoecological traits.

Introduction

Knowledge of environmental resources is the basis for
wise ecological management. This knowledge has grown
in many ‘‘developed’’ countries since the middle of the
twentieth century. As a consequence, several databases
with inventories of geographic localities, population levels
or distribution maps for some taxa exist (Hagemeijer and
Blair 1997; Jalas et al. 1999; Mitchell-Jones et al. 1999;
Asher et al. 2001). Among them, some plant groups or
vertebrate taxa, such as birds and mammals, are well-
known over large geographical areas. Information on
distribution ranges, population levels and the way they
change over time is the foundation upon which conser-
vation strategies rest. For example, the World Conser-
vation Union coding of endangered species (IUCN 2001)
is based on distribution ranges, population sizes and
changes in them over a relative short period of time (e.g.,
25 years or five generations). Sadly, even in some
‘‘developed’’ countries, many taxa are poorly known,
lacking such elemental pieces of information as distribu-
tion ranges. For example, complete atlas maps based on a
10·10 km UTM grid have been published only very re-
cently in Spain for popular organisms like birds (Martı́
andDelMoral 2003), reptiles (Pleguezuelos et al. 2002) or
mammals (Palomo and Gisbert 2002). However, it is
widely recognized that atlas information is highly
dependent on the search effort expended (Donald and
Fuller 1998;Dennis andHardy 1999;Dennis andThomas
2000; Williams et al. 2002). Thus, the precisions of
Spanish atlases are dubious because the absence of a
species in many UTM squares does not necessarily mean
that the species are not present in them, but that they could
not be found with the seach effort invested, especially in
areas where they are very scarce and localized. This is the
usual case formany small, inconspicuous animals in areas
where they are very scarce. Obviously, this problem is
exaggerated in ‘‘underdeveloped’’ countries.

Distributions and abundances of organisms have
been routinely related to environmental attributes in
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several research programs like ecological biogeography,
wildlife management and analyses of ecological niches
(Austin et al. 1990; Iverson and Prasad 1998; Teixeira
et al. 2001; Atkinson et al. 2002). A plethora of statis-
tical methods have been used in the last 30 years to carry
out this approach (Guisan and Zimmermann 2000;
Anderson et al. 2003), although a common pattern has
emerged in many of these studies: habitat characteristics
and environmental variables are frequently closely re-
lated to organism abundance and occurrence if proper
models of association are used (these are not always
linear relationships: see Osborne et al. 2001; Scott et al.
2002). These statistical models have helped to develop
our understanding of the dispersions and abundances of
organisms at different spatial scales (e.g., Araújo and
Williams 2000; Martı́nez et al. 2003; Brotons et al.
2004a), and to resolve the question of whether observed
ecological patterns arise from causal or casual founda-
tions (Legendre and Legendre 1998). On some occa-
sions, the scope of this approach has been widened and
it has been used in attempts to make prospective state-
ments about distribution–abundance in other nonsam-
pled areas (Seoane et al. 2003; Araújo et al. 2005) or to
predict the future given several scenarios (climatic
change, environmental impacts: Iverson and Prasad
1998; Pearson et al. 2002).

Nevertheless, little work has been done to determine
how species-specific traits influence the predictive capa-
bilities of distribution models (but see Boone and Krohn
1999; Stockwell and Peterson 2002; Kadmon et al.
2003). For example, among groups of animal species, the
successes of several modeling techniques are inversely
related to the spatial variability (mobility and nomad-
ism) and the niche width, but there are some effects that
are not consistent across all biological groups (Pearce
and Ferrier 2000b; Pearce et al. 2001). Similar effects
have been found within particular groups of species,
with negative effects of niche width and positive effects
of commonness, abundance and detectability (Boone
and Krohn 1999; Kadmon et al. 2003). In contrast,
Stockwell and Peterson (2002) found that the range size
of species had a negative influence on the predictive
accuracies of models, and no effects for other species-
specific traits such as use of primary habitat, ecological
breadth, migratory behavior or body size. Analyzing the
association between species biological traits and model
accuracy is a useful approach because we could improve
the sampling of some species (e.g., by modifying survey
protocols) if we knew the effects that specific traits have
on modeling results.

Considering this ecological and statistical back-
ground, and the growing need for accurate biodiversity
inventories in order to foster good environmental deci-
sions or conservation plans, this paper attempts to link
distribution mapping to species-specific modeling, tak-
ing into account habitat attributes. We obtained census
data on avian abundance during the winter in Central
Spain (Madrid) in order to model and predict bird dis-
tribution. The forecasts were used to evaluate their

congruence with the recently published atlas of winter-
ing birds in the same region (Del Moral et al. 2002), a
very geographically diverse area of 8,000 km2 with wide
climatologic, botanical and land use variations. This is a
modern and highly accurate atlas containing distribu-
tion maps that provide relative abundances of bird
species, expressed in birds observed per 10 h.

Working with very mobile taxa in winter, when it is
particularly difficult to produce distribution maps (Bib-
by et al. 2000), we modeled bird distributions in terms of
simple environmental and habitat variables throughout
a large region using census inventories, and tried to
answer the following questions:

1. Can statistical models obtained with a randomly
stratified protocol be used to predict quantitative
distribution maps (relative abundances) of species?

2. Are there clear species-specific traits constraining the
predictive power of the distribution models and the
accuracies of the maps produced?

Interspecific variation in predictive errors

Interspecific discrepancies are expected in the modeling
results since species differ in many ecological traits re-
lated to their patterns of distribution and abundance
(e.g., Kadmon et al. 2003) and to differences in inter-
actions between the species and observers while sam-
pling. Below we summarize the main hypotheses, and
their associated predictions, which are used to explain
why we expect some of the species to be modeled better
than others.

Commonness at the regional scale (the UTM squares
occupied), a measure of how widespread a species is,
should be linked to the correlation between the atlas
maps observed and those predicted by models (Kadmon
et al. 2003). This is because the more widespread species
often have broader niche widths and are expected to
track environmental variability more tightly than the
very scarce ones (Gaston and Blackburn 2000). Never-
theless, Stockwell and Peterson (2002) found that the
maximum predictive accuracy of a model was not
independent of range size, as widespread species were
modeled less accurately.

Between-years constancy in regional distribution can
be understood as a direct measurement of the spatial
stability of the distribution area (Boulinier et al. 1998;
Maron et al. 2005). This is an important concern when
studying very mobile organisms, like birds in winter,
which can perform short migrations tracking benign
environmental conditions (e.g., avoiding cold spells in
mountainous areas). From this measurement of how
stable residency areas are in winter, it is expected that
higher between-years constancy in atlas maps is associ-
ated with better agreement between the atlas maps and
the census-based predicted maps.

Species with specialized environmental requirements
(stenotopic), and those whose preferred habitats are
scarce and clearly identifiable in the study region, should
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stand a better chance of being accurately predicted be-
cause of their sharply defined distribution patterns (the
census samples where the species is absent versus others
where the species is present and abundant; Seoane et al.
2005). These remarkable patterns of habitat preference
and distribution should be also captured by atlas maps
(see also Kadmon et al. 2003; Brotons et al. 2004b).

Maximum ecological densities of species (the highest
abundance in the region) are expected to increase the
correlation between predicted and observed maps, be-
cause the species with the highest abundances in the
study region are those with the largest variability in the
variables to be modeled (densities in census plots) and
checked (relative abundance within atlas squares). This
fact should allow us to obtain models that explain a
large proportion of the spatial variation in abundance
(Seoane et al. 2005). On the other hand, less powerful
models and inaccurately predicted maps are expected
when the range in the response variable is lower in very
rare or relatively scarce species.

Grouping behavior of the species should constrain the
correlation between predicted and observed maps. We
expect more variation among estimations of relative
abundance in quantitative inventory work for species
gathering in large flocks than for those living alone or in
small flocks. Thus, abundance estimations in census
plots and in atlas squares should be more unstable in
species living in large groups, precluding the attainment
of good predictions.

Inconspicuousness should limit the prediction of
accurate distribution maps, because less conspicuous
species are more likely to remain undetected in inventory
work, especially if they are rare. Therefore, less detect-
able species should provide unstable estimations of rel-
ative abundance in atlas work (Seoane et al. 2005).

Methods

Study area

The study area was located in the center of the Iberian
Peninsula, comprising Madrid province and nearby
areas (less than 50 km from the province border). This
region is very diverse environmentally, including high
mountain areas reaching 2,450 m a.s.l. as well as low-
land plateaus only 450 m a.s.l. Winter climate is colder
in the highest areas of the Guadarrama Range (average
winter temperature of 0.5 �C above 2,000 m a.s.l., and
regular snowfalls) than in the mild and wet valleys of the
Tajo Basin (average winter temperature of 6.9 �C under
600 m a.s.l.). There is a wide variety of habitats in this
region: four main autochthonous forests [pine woods
(Pinus sylvestris), riparian woods, deciduous oak
woods (Quercus pyrenaica) and evergreen holm-oak
woods (Quercus ilex)], parklands of ashes (Fraxinus an-
gustifolia) or holm-oaks devoted to livestock, several
types of shrublands, artificial and natural pasturelands,
marshlands, rock outcrops, various agricultural

formations (vineyards, olive plantations, cereal crop-
lands) and urban areas (from small villages to large
cities). See Izco (1984) for more details and descriptions
of the geographic, climatic and botanic characteristics of
the study region.

The data analyses performed in this paper use three
independent sources of information: bird census tran-
sects, relative abundance in UTM squares derived from
the bird atlas, and environmental variables describing
geographical location and habitat attributes.

Census data

Bird censuses of terrestrial habitats were performed
during winter (December, January and the first fortnight
of February) by the authors of this paper and were also
obtained from data published in the literature (Santos
et al. 1983; Potti 1985a, 1985b; Monreal 1986; Carrascal
1988; Tellerı́a et al. 1988; Carrascal et al. 2000). The
locations where censuses were taken by the authors were
chosen in order to complement those already available
in the literature, covering habitats or geographical areas
lacking data. The time period covering the transects
spanned from 1981 to 2003. All censuses were carried
out following the same methodology: a line transect with
survey belts of 25 m at each side of the progression line
(Tellerı́a 1986; Bibby et al. 2000). We did not observe
any consistent difference between the two datasets (those
obtained from the literature and censuses taken by the
authors of this study; see below). Although transect
locations were not randomly selected, in part because
some of them were obtained from the literature, we do
not think this sampling design limitation introduces any
bias, as they were established throughout the whole
study area (see Fig. 1) covering all environments in the
region (by habitat structure and altitude). Transects
were established in ‘‘homogeneous’’ areas (those that did
not have a mixture of different habitats). All censuses
were obtained on windless days without precipitation, at
8:00–11:30 and 15:00–17:00 GMT, at a low rate of �1–
3 km/h (slower in wooded habitats and/or places with
many species and high densities). Data were obtained for
77 transects (see Fig. 1), covering areas of 8–500 ha
(median=32 ha; a line transect of 1 km samples 5 ha).
Ninety-seven species were recorded in 4,173 ha. Due to
sample limitations, statistical analyses were only per-
formed with 64 species that appeared in at least five
censuses. Bird density was expressed in birds/10 ha.

Each census transect was characterized by its geo-
graphic location (latitude and longitude), altitude, and
seven variables describing habitat structure and floristic
composition. An index of structural complexity and
vegetation volume ranged from 0 to 5: 0—lacking in or
containing very sparse vegetation cover; 1—pasture-
lands; 2—shrublands with sparse vegetation cover made
up of bushes lower than 0.5 m; 3—thick shrublands with
bushes higher than 0.3 m in height; 4—parklands, nar-
row riparian woods, hedgerows; 5—dense forests with
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trees higher than 4 m (mainly >8 m). Values of 0–1
were used to codify the absence (0) or the presence (1) of
the following habitat attributes: agricultural use,
urbanization, presence of water (pools, streams), rocky
outcrops, coniferous trees, deciduous trees and ever-
green trees.

During the winters of 1999–2003, the authors of this
paper also recorded the flock sizes (FS) of bird species in
the study region. When a species was sighted, we tried to
count all of the individuals observed within a radius of
25 m. Using this procedure we obtained enough data to
make a coarse-grained description of the average group
sizes of the 64 species included in data analyses (sample
sizes for all of the species ranged between 6 and 108
groups; median=34 groups).

The censuses used in this paper also counted the birds
observed outside the census belts. An index of lateral
detectability (DET) was constructed (Järvinen and
Väisänen 1975) as the ratio between the birds belonging
to each species observed inside the transect belt and the
total number of birds observed (the ratio of main belt to
total belt observations). This index reflects important
species characteristics related to the interaction with the
observer, such as song or call intensity and , conspicu-
ousness and mobility. It ranges between high values for
inconspicuous species (e.g., >85% of individuals
observed less than 25 m away, on both sides of the
observer: Passer montanus L. and Regulus regulus L.) to
low figures for more detectable species (e.g., Buteo

buteo L. and Corvus corone L.; <5% of observations at
less than 25 m; see also Järvinen and Väisänen 1976;
Järvinen 1978).

Atlas data

Atlas data was obtained from the atlas of wintering
birds in Madrid (Del Moral et al. 2002). In this quan-
titative atlas, the area of study is divided into 115
10·10 km UTM squares that were prospected during
the winters of 1999–2001 for a group of 76 experienced
volunteers. The observers were asked to cover a mini-
mum of 10 h per square (average time was 0.24 h/km2),
sampling along routes in distinct habitats at a low speed.
Time was invested in each habitat in proportion to the
surface area covered by the habitat in the UTM square
(Del Moral et al. 2002). Counts per UTM square were
standardized afterwards to birds per 10 h, as an estimate
of relative abundance. In the following analysis, we only
used the data for 67 UTM squares that had more than
10 h of observation and more than 75% of their surface
within the Madrid province (see Fig. 1).

Between-year constancy in regional distribution (BY)
was estimated by considering the distribution patterns
observed for the studied species over two consecutive
winters (1999–2000 and 2000–2001). Spearman rank
correlations (rs) were obtained that related the relative
abundance (birds/10 h per UTM) across the 67 squares
selected in both winters. The higher the rs value, the
more stable the winter distribution patterns of the spe-
cies in the study period. Commonness in the study re-
gion was estimated using the number of 10·10 km UTM
squares (out of a total of 67) occupied by the species.

Geographic information system databases

The statistical models (see below) built with the 77-
transect census for the 64 species considered were used
to produce predictive distribution maps for the whole
study region. IDRISI 32 software (Eastman 1999) was
used to obtain several digital raster maps for each of the
explanatory variables considered at a spatial resolution
of 1,000 m. Latitude and longitude digital maps were
also developed using the scores for these spatial vari-
ables for each 1 km cell. Altitude scores come from a
digital elevational model built using digital cartography
(scale 1:200.000) provided by the cartographic division
of the Comunidad de Madrid. The presence of water in
each 1 km raster cell (pools or streams) was codified to a
binomial variable (presence–absence) from a vectorial
map of streams, rivers and flooded areas. Cells used for
agriculture, cells used as urban land, cells containing
rocky outcrops, and cells containing deciduous and
evergreen forest or coniferous forest were also mapped
using binomial variables from the raster information
provided by the European Environment Agency (CO-
RINE programme 1985–1990). The six levels of habitat

Fig. 1 Location of the study area in Madrid province (Central
Spain); 10 km UTM grid squares selected (shown in gray), and
location of the 77 bird census transects used (circles)
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complexity used were also derived from the CORINE
land use categories.

Analytical procedures

Species density (birds/10 ha) in the census samples was
modeled using the geographic positions of the transects
and habitat characteristics as explanatory variables, and
it was analyzed using regression tree analyses. This is a
statistical tool related to general additive models where
the response variable undergoes successive splits
according to threshold values of the predictor variables
that maximize the differences between the two resulting
groups of samples. Regression trees can be used to deal
with analytical problems linked to variables with non-
Gaussian distributions, and they allow the interpretation
of datasets with complex nonlinear relationships be-
tween response and predictor variables, and/or high-
order interactions among predictor variables (Breiman
et al. 1984; Venables and Ripley 1999; Boone and Krohn
2000; De’ath and Fabricius 2000). One important
mechanism used to prevent trees from overfitting data is
tree pruning. Pruning can be employed during tree
construction (pre-pruning) based on stopping rules. The
stopping rules used in this paper were that (1) nodes
should contain at least ten censuses, and (2) the ‘‘leaves’’
(the ends of the tree tips) should include at least five
censuses. Tree model significance was tested by means of
the residual deviance (a measure of group heterogeneity)
attained for the splitting criteria of the whole tree based
on a chi-square test. Classification and regression trees
were carried out using S-Plus 2000 software (Clark and
Pregibon 1993; Crawley 2002).

Dichotomous explanatory predictors were entered as
dummy variables. Geographical locations of transects
(latitude and longitude) were included in the data anal-
yses for two reasons. First, Carrascal et al. (2002) found
clearly defined geographical patterns in avian abun-
dance, diversity and species richness within this region
when tracking the combined effects of altitude, temper-
ature and precipitation (mainly from NE to SW). Sec-
ond, the spatial contiguity of the sample units (i.e. the
transects) has to be considered in order to control the
spatial autocorrelation and to establish the spatial
structure of the data used to analyze the field surveys
(Legendre 1993; Legendre et al. 2002).

The models obtained for the 64 species were used to
predict their relative abundances in the 1·1 km squares
taking into account environmental information obtained
from geographical information system (GIS) databases.
Final predictions for the 67 10·10 km UTM squares
were the average densities for all of the 1·1 km squares
in each 10·10 UTM square (100 1·1 km squares). This
procedure matches the spatial resolution of both field
approaches (survey transects and atlas data). The
agreement between the predictions of the statistical
models and the quantitative atlas maps was evaluated by
correlating both datasets. We used Spearman rank

correlations between the relative abundances obtained
from the the atlas for the 10·10 UTM squares and the
averaged model predictions for the 100 corresponding
1·1 squares. The significance of each correlation is
provided in order to help us to identify those species
whose predicted maps are in strong agreement with the
corresponding atlas maps. We did not transform the
data in order to normalize them because it is impossible
to do this with the abundance distributions observed for
the species in the atlas work. The large number of zeros
in the samples of the species studied (where the species
was not present or was very unlikely to be detected in
20–30 h of atlas work) ruled out the application of any
transformation in order to attain normality. Observed
and predicted abundances were in different measurement
units, although they refer to the same concept (how
many birds per unit of standardized sampling effort;
Bibby et al. 2000). Observed bird abundances were ex-
pressed in birds/10 h in the atlas data, while model
predictions were in units of birds/10 ha for the regres-
sion trees.

The atlas work was carried out over two consecutive
winters (1999–2001), while census work spanned a sub-
stantially longer period (1981–2003). Interannual varia-
tions in bird abundance in the study region should
constrain the predictive abilities of the models and the
correlation between predicted and observed maps.
However, this potential bias is only a minor concern
because 74% of the 77 censuses were done at the same
time as the atlas work ±1 year. Moreover, a preliminary
exploration of the data did not reveal any significant
effect of year on the recorded abundance of any species
(correlating the residuals of the tree regression models
with census year as a lineal predictor—P>0.1—in the 64
species analyzed).

Differences between the species’ environmental
preferences and the availability of those environments
in the study region (ENVD) were calculated using the
Euclidean distance between the means of the explana-
tory variables (excluding geographical coordinates)
using the 77 census plots (the availability sample) and
the weighted means of each species in the variables
describing these 77 census plots (the preference sam-
ple). The weighted means of each species for the vari-
ables describing the census plots were obtained by
considering densities of species in the censuses as well
as the characteristics of the 77 line transects. Before
computing the Euclidean distances, each variable was
standardized to a mean of 0 and standard deviation of
1 (each variable weighed the same in distance estima-
tions). The maximum abundance in the region (Dmax)
was estimated as the highest density measured over the
whole sample of 77 census plots. Commonness at a
regional level (UTMs) was measured as the number of
UTM squares occupied in Madrid within the sample of
67 10·10 km squares.

Associations between predictor variables (autoeco-
logical species traits in Table 1: BY, FS, DET, ENVD,
Dmax and UTMs) and interspecific differences in
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Table 1 Values of the specific traits considered for the 64 species studied, and the results from models built to predict the densities (birds/
10 ha; regression trees) of 64 bird species in 77 census transects made in Central Spain

Species N Specific traits Tree models

BY FS DET ENVD Dmax UTMs D2% rs

Aegithalos caudatus 28 0.64 5.9 67.1 2.38 11.5 64 75.0*** 0.27*
Alauda arvensis 17 0.66 12.5 35.6 4.03 59.5 56 60.5*** 0.73***
Alectoris rufa 18 0.70 2.4 50.3 2.31 4.1 63 33.3*** 0.43***
Anthus pratensis 23 0.45 4.4 50.8 2.28 67.6 64 21.1*** 0.13
Buteo buteo 10 0.57 1.2 3.2 2.55 2.7 60 24.2** 0.22
Carduelis cannabina 25 0.62 31.1 59.7 3.07 64.9 65 19.8*** 0.04
Carduelis carduelis 34 0.59 13.4 35.0 1.49 48.3 65 34.8*** 0.55***
Carduelis chloris 12 0.58 9.4 43.8 3.24 12.7 65 32.6*** 0.61***
Carduelis spinus 11 0.34 11.4 56.9 2.35 32.1 31 32.6*** -0.31**
Certhia brachydactyla 34 0.61 1.2 43.3 2.26 17.4 62 49.5*** 0.35**
Cettia cetti 13 0.56 1.1 68.7 3.34 22.1 52 44.5*** 0.45***
Cisticola juncidis 11 0.39 1.3 49.4 3.11 4.0 31 38.0*** 0.39***
Columba livia 14 0.60 3.0 41.9 4.62 27.8 64 67.0*** 0.49***
Columba palumbus 24 0.63 15.5 13.1 3.91 53.8 65 29.1*** 0.64***
Corvus corone 17 0.66 2.5 2.1 2.22 5.4 41 30.3*** 0.02
Corvus monedula 12 0.69 29.6 35.9 2.95 26.1 54 31.2*** 0.12
Cyanopica cyana 9 0.81 10.2 31.9 2.90 12.5 36 27.1*** 0.38***
Dendrocopos major 15 0.41 1.1 39.6 2.45 3.5 49 28.9*** 0.40***
Emberiza cia 23 0.60 3.5 56.4 1.46 8.1 59 35.6*** 0.31**
Emberiza cirlus 8 0.42 4.5 51.4 2.16 4.1 36 26.0*** 0.07
Emberiza schoeniclus 5 0.57 2.4 53.7 3.29 7.5 25 41.4*** 0.40***
Erithacus rubecula 45 0.66 1.0 44.9 1.70 12.1 67 79.3*** 0.15
Falco tinnunculus 6 0.60 1.1 20.0 2.60 0.9 59 32.7 -0.26*
Fringilla coelebs 44 0.68 6.1 33.5 1.96 111.6 66 28.2*** 0.51***
Galerida cristata 18 0.70 3.9 48.5 2.40 13.8 63 34.5*** 0.64***
Galerida theklae 20 0.58 2.8 40.5 1.92 6.1 49 40.3*** -0.17
Garrulus glandarius 7 0.73 1.5 4.8 2.07 0.3 34 11.2 0.34**
Lanius excubitor 23 0.52 1.1 35.4 1.08 1.2 64 32.3 -0.04
Loxia curvirostra 9 0.13 8.8 20.0 4.55 11.0 32 45.4*** 0.23
Lullula arborea 13 0.46 3.7 37.7 2.42 6.3 58 27.8*** 0.30*
Melanocorypha calandra 6 0.54 26.0 38.6 3.84 28.5 24 29.5*** 0.44***
Miliaria calandra 16 0.60 6.2 43.5 2.14 17.8 59 30.3*** 0.42***
Motacilla alba 35 0.52 2.2 41.5 2.02 14.5 66 37.2*** 0.06
Motacilla cinerea 9 0.23 1.2 75.6 3.64 4.2 48 34.8*** 0.02
Parus ater 21 0.74 5.0 54.9 3.56 26.1 48 69.9*** 0.64***
Parus caeruleus 42 0.39 1.5 55.8 2.36 26.4 67 65.3*** 0.18
Parus cristatus 18 0.84 2.1 48.0 3.60 7.8 38 66.5*** 0.66***
Parus major 49 0.65 1.6 45.7 1.73 16.0 66 58.0*** 0.34**
Passer domesticus 25 0.65 16.6 63.9 4.44 161.3 67 78.4*** 0.46***
Passer montanus 12 0.33 9.7 95.2 2.93 7.5 62 38.6*** 0.03
Petronia petronia 7 0.36 9.9 31.1 2.13 4.2 38 24.9*** 0.00
Phoenicurus ochruros 21 0.32 1.1 66.8 1.34 5.8 66 37.5*** 0.32**
Phylloscopus collybita 37 0.62 1.7 59.8 3.07 55.2 66 39.4*** 0.12
Pica pica 40 0.72 2.8 28.1 2.35 23.8 66 44.3*** 0.41***
Picus viridis 23 0.49 1.0 11.1 1.74 1.6 66 46.5*** 0.32**
Prunella modularis 19 0.56 1.1 40.5 1.13 3.6 44 34.6*** 0.30*
Regulus ignicapillus 28 0.41 2.1 64.8 2.75 10.0 59 59.9*** 0.29*
Regulus regulus 13 0.31 4.5 85.7 3.96 7.2 31 53.5*** 0.25*
Remiz pendulinus 6 0.74 2.6 59.0 3.21 21.3 21 41.1*** 0.43***
Saxicola torquata 28 0.38 1.4 48.5 2.42 5.0 62 57.1*** 0.34**
Serinus citrinella 12 0.10 3.3 33.9 4.10 13.8 10 20.4*** 0.29*
Serinus serinus 35 0.63 5.9 43.4 1.51 20.9 65 57.5*** 0.47***
Sitta europaea 15 0.66 1.3 35.2 3.68 3.8 18 37.4*** 0.63***
Sturnus unicolor 32 0.44 67.8 14.4 3.32 58.0 67 63.6*** 0.18
Sylvia atricapilla 14 0.39 1.1 60.3 3.87 13.0 52 23.2*** 0.41***
Sylvia melanocephala 13 0.71 1.0 49.2 4.16 4.8 57 46.3*** 0.40***
Sylvia undata 22 0.49 1.2 45.4 2.15 4.7 59 47.8*** 0.03
Troglodytes troglodytes 28 0.37 1.1 54.0 2.43 4.8 59 58.5*** 0.09
Turdus iliacus 9 0.23 7.6 17.8 3.02 6.3 43 33.5*** 0.18
Turdus merula 52 0.69 1.3 44.6 2.04 17.3 67 54.9*** 0.29*
Turdus philomelos 34 0.61 2.8 56.8 2.68 40.4 66 25.3*** 0.48***
Turdus viscivorus 26 0.82 10.6 17.3 2.04 12.4 51 19.6*** 0.34**
Upupa epops 5 0.37 1.1 42.4 3.45 0.4 42 26.4 0.39***
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prediction accuracy (rs: Spearman rank correlations
between observed atlas and predicted relative abun-
dances per UTM 10·10 square) were analyzed by means
of multiple regression analysis.

Bird species are related through evolution via a
phylogenetic scheme, and so they should not be treated
as independent sample units (Felsenstein 1985; Harvey
and Purvis 1991). Nevertheless, in some instances
ecologists are not interested in patterns of biological
diversification across evolutionary time, but only in
present-day relationships comprising nonevolutionary
associations formed in human-transformed environ-
ments (Westoby et al. 1995; Ricklefs and Starck 1996).
Since we are studying the relationships between
ecological species traits and present-day distributions of
species in a transformed landscape, we have simplified
the data analysis, avoiding comparative methods.

Results

Model building and prediction of regional distribution

The original deviance explained by the statistical
models built using the species densities observed in the
sample of 77 census transects was moderate (Table 1;
mean= 41.7%, range 19.6–79.3% in models includ-
ing 2–8 splitting criteria). Nearly all models were

statistically significant (P<0.01 in 60 out of 64 spe-
cies).

Predictions from regression tree models were signifi-
cantly associated with observed distributions of relative
abundances in the atlas squares in 68.8% of the species
(44 out of 64; Table 1). Spearman correlation values
between the observed relative atlas abundances and the
predictions from the census-based models were highly
variable (range �0.31 to 0.73), with an average of 0.29.

Interspecific variation in the predictive accuracies
of the statistical models

A significant amount of the interspecific variability in
the agreement between predictions from the regres-
sion trees and the atlas data was explained by ecological
species traits (R2=0.328, F(7,56)=3.90, P=0.002;
Table 2). Accuracy in predicting the bird atlas distri-
butions was positively and significantly associated with
the between-year constancy in regional distribution,
which explained the largest proportion of the interspe-
cific variability (Table 2). Differences between environ-
mental preferences and environments available in the
study region also (positively) affected the agreement
between model predictions and atlas data (Fig. 2). The
remaining autoecological traits and the explained
deviance of the regression trees did not affect the
interspecific differences.

Table 1 Continued

Species N Specific traits Tree models

BY FS DET ENVD Dmax UTMs D2% rs

Vanellus vanellus 10 0.48 22.2 9.8 3.30 5.7 35 26.1*** 0.32**

N number of census transects where the species were present, BY between-year constancy in regional distribution (Spearman rank
correlation between distribution patterns observed in two consecutive winters), FS average flock size, DET inconspicuousness measured as
the percentage of birds detected in the proximity of the observer (less than 25 m), ENVD distance between average environmental
preferences and environments available in the study region, Dmax maximum abundance measured in the sample of 77 censuses, UTMs
commonness in the study region, given as the number UTM 10·10 km squares occupied by each species (out of a maximum of 67), D2%
reduction in original deviance obtained by tree regression models, expressed in percent (the significances of the tree models are expressed
with asterisks), rs Spearman correlations between observed (atlas data) and predicted relative abundances (significance of rs expressed with
asterisks)
***P<0.001, **P<0.01, *P<0.05

Table 2 Results from multiple regression analysis relating the agreement between atlas data and predictions of regression trees (see rs in
Table 1) and the model characteristics and ecological traits of species in the study region

b P % var

% Deviance explained by the model (D2%) �0.013 0.926 0.01
Between-year constancy (BY) 0.418 <0.001 14.69
Ecological specialization (ENVD) 0.412 0.014 7.73
Maximum abundance (Dmax; in log) 0.154 0.476 0.62
Inconspicuousness (DET) �0.057 0.671 0.22
Flock size (FS; in log) �0.156 0.351 1.06
Commonness at the regional scale (UTMS) 0.049 0.816 0.07

See Table 1 for the meanings of the variables. Sample size is 64 species
b standardized partial regression coefficient, % var explained variance (sum of squares of each effect divided by the total sum of squares)
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Discussion

Factors affecting accuracy of bird modeling
and mapping

We were able to predict the regional winter distributions
of most bird species from statistical models of local
densities, although there was a considerable interspecific
variability in the agreement with quantitative atlas
maps. Explaining why the disagreements between atlas
distribution and the distribution predicted by the models
are higher in some species than in others is more inter-
esting than stating the successes and failures of the
models. Thus, disagreements between observed and
predicted results were associated with ecological traits
related to distribution patterns. This fact is habitually
dismissed when modeling species distribution (but see
Boone and Krohn 1999; Stockwell and Peterson 2002;
Kadmon et al. 2003).

The most important predictor of these disagreements
was the between-year constancy in atlas distribution.
Nomadic and irruptive species, whose winter quarters
lay in northern latitudes, reached our study area in high
numbers only after environmental conditions worsened
severely in their normal wintering areas [this includes
species such as the Redwing (Turdus iliacus) and the
Siskin (Carduelis spinus)]. These species are likely to be
recorded randomly in the study region because their
wintering in the area is largely mediated by nonlocal
factors. Therefore, their occurrence or abundance will be
weakly related to the suitability of a particular area,
and the same atlas square can attain very different
abundance estimates in two consecutive years. In
these cases it is unlikely that wintering birds occupy all
of the suitable habitat in a region. However, these

disagreements between the relative abundances pre-
dicted by statistical models and those observed in
quantitative atlas maps are pessimistically counted as a
failure of the former.

Environmental specialization, measured as differ-
ences between environmental preferences and habitat
availability in the study region (ENVD in this paper),
also explained the disagreements. The distributions of
stenotopic species with small available areas in the study
region are similarly depicted with both the atlas and the
statistical models. On the other hand, ubiquitous species
do not show clear relations with the kind of coarse-
grained explanatory variables we used, and thus they are
difficult to model (Brotons et al. 2004b). Besides, these
species appear in most atlas squares because there are
probably many suitable patches for a eurytopic species
in 100 km2. It is worth noting that habitat width seems
of little value per se, and may even be misleading when
predicting the success of a model (Boone and Krohn
1999; Garrison and Lupo 2002; Hepinstall et al. 2002;
but see Stockwell and Peterson 2002), because it is the
interaction between habitat preferences and environ-
mental availability that really matters.

Predictions of inconspicuousness, maximum abun-
dance, flock size and commonness were not supported
by our data. These variables had no effect on the cor-
relation between model predictions and observed
quantitative distributions derived from atlas maps (Ta-
ble 2). Some of these effects have not been consistently
supported in the literature for different taxa. Thus,
Stockwell and Peterson (2002) found that widespread
species were modeled less accurately than those species
with more restricted geographical ranges, while some
authors found the opposite (Boone and Krohn 1999;
Kadmon et al. 2003). Finally, the species with the more

Fig. 2 Relationship between
the environmental
specialization (ENVD) and the
between-year constancy in
regional distribution (BY) along
with the prediction accuracy of
the regression trees (the
agreement between the relative
abundances predicted by
habitat models and those
observed in atlas work; see rs in
Table 1). Prediction accuracy is
directly proportional to dot
size. Sample size is 64 species
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explanatory habitat models, as judged by the amount of
explained deviance, did not show better agreements be-
tween distributions derived from statistical models and
maps. This fact should prevent us from using the mod-
el’s percentage of explained deviance as a measure of its
predictive power (MacNally 2000).

Statistical models of census inventories
as a complement to atlas work

The modeling approach to studying species distribu-
tions, based on randomly established census locations or
those following a stratified sampling, has several
advantages over traditional atlas studies. First, the
sampling protocol based on quantitative inventories for
census localities yields data on fine-grained patterns of
distribution and abundance of species—such as ecolog-
ical densities (range and maximum), habitat preferences
and ecological width—more easily. This information
may help us to empirically assess the commonness–rarity
of organisms in order to define local conservation pri-
orities at different administrative and political levels
(e.g., red lists). Second, statistical models relating
occurrence or abundance data to some environmental
variables—such as habitat, land use and topographical
features—allow us to explain and predict bird distribu-
tion. These models can produce maps at higher resolu-
tions than those achieved in atlas work, and can be
subjected to more formal criticism when evaluating their
degrees of success and their shortcomings (Guisan and
Zimmermann 2000; Pearce and Ferrier 2000a).

On the other hand, the effort undertaken for an atlas
is typically larger than that required by quantitative
inventories on census localities even though they both
provide the same kind of information: maps. Consider-
ing a sample size of 2 km (10 ha) per locality, the time
invested in the Madrid atlas would have allowed for
approximately 800 census plots. This huge sample size is
one order of magnitude higher than that used in this
study to build statistical models. The difference would
have been even greater if we follow the recommenda-
tions for atlas work stated by other authors (40–45 h for
5·5 km squares in forested habitats, Roberge and
Svensson 2003). For these reasons, the statistical models
derived from quantitative inventories on census localities
could be thought of as an interesting complementary
approach to atlas work.

The approach of this paper (random stratified sam-
pling and modeling of species distribution, together with
spatially explicit predictions obtained using GIS tech-
niques) can be readily generalized as a complement to
bird atlas work. We recommend transects of 2 km
censused in 1 h, recording species within 25 m belts and
at any distance from the observer (useful for very scarce
and highly detectable species). We suggest that this
complementary methodology could be used in those
environmental heterogeneous territories where sampling
the whole ecological variability with a limited number of

qualified observers or economic resources available is a
formidable endeavor.
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Araújo MB, Thuiller W, Williams PH, Reginster I (2005) Down-
scaling European species atlas distributions to a finer resolu-
tion: implications for conservation planning. Glob Ecol
Biogeogr 14:17–30

Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S
(2001) The millennium atlas of butterflies in Britain and Ire-
land. Oxford University Press, Oxford

Atkinson PW, Fuller RJ, Vickery JA (2002) Large-scale patterns of
summer and winter bird distribution in relation to farmland
type in England and Wales. Ecography 25:466–480

Austin MP, Nicholls AO, Margules CR (1990) Measurement of the
realized qualitative niche: environmental niches of five Euca-
lyptus species. Environ Manage 60:161–177

Bibby CJ, Burgess ND, Hill DA, Mustoe SM (2000) Bird census
techniques. Academic, New York

Boone RB, Krohn WB (1999) Modeling the occurrence of bird
species: are the errors predictable? Ecol Appl 9:835–848

Boone RB, Krohn WB (2000) Relationship between avian range
limits and plant transition zones inMaine. J Biogeogr 27:471–482

Boulinier T, Nichols JD, Hines JE, Sauer JR, Flather CH, Pollock
KH (1998) Higher temporal variability of forest breeding bird
communities in fragmented landscapes. Proc Natl Acad Sci
USA 95:7497–7501

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classifi-
cation and regression trees. Chapman & Hall, New York
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