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s u m m a r y

In the last decade, the application of predictive models of species distribution in ecology, evolution, and
conservation biology has increased dramatically. However, limited available data and the lack of reliable
absence data have become a major challenge to overcome. At least two approaches have been proposed
to generate pseudo-absences; however it is not clear how the number of pseudo-absences created affect
model performance. Moreover, the spatial bias in the collecting localities of a species (presence data)
may add extra noise to the final distribution model. Here, we use a virtual species to assess the effects
of spatial sampling bias, and number and location of pseudo-absences on model accuracy. We found
that both number of pseudo-absences and spatial bias in sampling localities, as well as their interac-
tion, significantly influence all accuracy measures (AUC, sensitivity, and specificity). However, location
of pseudo-absences (either generated across the entire study area or only outside the environmental
envelope of the species) does not affect model performance. These results provide some methodological
guidelines for developing reliable distribution hypotheses when presence data are scarce.

© 2010 Elsevier GmbH. All rights reserved.

Introduction

Currently, the general lack of reliable distributional data for bio-
geographical and conservation purposes is overcome by the use
of model predictions (Ferrier et al. 2002; Raxworthy et al. 2003;
Williams et al. 2005). Unfortunately, the power of these meth-
ods is uncertain for modelling the distribution of organisms such
as invertebrates, which represent the majority of biological diver-
sity. For these organisms, we generally only have presence data
(location points of known species occurrences) that are not evenly
distributed across the environmental and spatial gradient of the
study area, and we do not have absence data (location points of
known species absence). Therefore, the question is whether we can
obtain a relatively reliable predicted distribution with this limited
information. Here, we explored the effects of sampling biases of
presence data, and quantity and location of pseudo-absences on
the performance of distribution models, proposing some method-
ological guidelines for developing reliable distribution hypotheses.

To overcome the frequent inexistence of absence information,
several authors have proposed two main approaches for selecting
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pseudo-absence points in order to use powerful group discrim-
ination techniques that need presence–absence data. The first
approach entails including background absence points across all
the study area (Stockwell & Peters 1999), or within the areas
with environmental characteristics similar to those containing
well-sampled data for the entire group (Ferrier & Watson 1997;
Zaniewski et al. 2002). The second approach includes absence
points outside the environmental domain favourable for the species
(Engler et al. 2004; Lobo et al. 2006). The latter method employs
a profile technique (i.e. environmental envelope, ecological niche
factor analysis) using only presence data to firstly calculate a suit-
ability map for a species. With this map, pseudo-absence points
are selected outside the environmental space obtained from the
observed presence points of the species. Then, both presence data
and pseudo-absence data are included as a binomial dependent
variable in one of the available group discrimination methods that
use environmental predictors (i.e. GLM or GAM; see Guisan &
Zimmermann 2000) to model the distribution.

Independent of the approach used to select pseudo-absence
points, there is disagreement on the number of absence data that
should be used in modelling techniques. Many authors state that
prevalence (i.e. the ratio of number of presences to total data used to
build the model) highly influences model accuracy, although some
authors disagree over its effect (Fielding & Bell 1997; Manel et al.
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1999; Olden et al. 2002; Vaughan & Ormerod 2003; McPherson et
al. 2004; Luoto et al. 2005). The main consequence of using many
pseudo-absence points (a low prevalence) is that probability values
derived from predictive functions are unavoidably biased toward
the highest number of absence data used (Hosmer & Lemeshow
2000; Cramer 1999). To assign these low probability scores to a
true presence point, one must use an appropriate cut-off value to
convert decimal fraction probabilities to a binary variable (Liu et
al. 2005; Jiménez-Valverde & Lobo 2006; Jiménez-Valverde & Lobo
2007), or re-scale logistic probabilities by applying a favourability
function (Real et al. 2006). Thus, although a high number of pseudo-
absences affect the parameters of the models, their final reliability
can remain unchanged if a correct cut-off value is applied (Jiménez-
Valverde & Lobo 2006). However, because dependent variables
with thousands of times more zeroes than ones can underestimate
and produce imprecise probabilities for the most rare-event data
(King & Zeng 2001; Dixon et al. 2005), we need to understand how
the number of selected pseudo-absence points affects the perfor-
mance of our models (Jiménez-Valverde et al. 2009).

Species location data collected at different times generally
results in different distribution maps for that species (Lobo et al.
2007). These different distributions are the result of, among other
reasons, an increase in distributional information over time, both in
a random and in an environmentally structured fashion. When the
distributional information increases at random the “true” distribu-
tion of a species would be uniformly and gradually revealed across
its entire range. Alternatively, if species data is incorporated over
time in an environmentally structured way, an expansion of the
range resulting from sociological, environmental, or sampling effort
bias may be revealed. (Dennis & Hardy 1999; Dennis et al. 1999;
Dennis & Thomas 2000; Dennis et al. 2006; Zaniewski et al. 2002;
Anderson 2003; Reutter et al. 2003; Graham et al. 2004; Soberón &
Peterson 2004; Martínez-Meyer 2005). It is widely recognised that,
to produce reliable distribution models, presences and absences
need to be well-distributed across the entire environmental and
geographical gradient of the study area (Kadmon et al. 2004; Hortal
& Lobo 2005; Reese et al. 2005; Soberón & Peterson 2005; Vaughan
& Ormerod 2005; Hortal et al. 2007; Hortal et al. 2008; Lobo et al.
2010), but it is not clear how biases in the distribution of presence
points influence the accuracy of distribution models.

Several issues in distributional modelling techniques need to be
resolved for these models to become widely applicable (Soberón
& Peterson 2005; Austin 2006). Moreover, the conditions worsen
when modelling invertebrate distributions, because of the poor
quality and scarce presence data, and a usually high proportion
of false absences. What is the accuracy of presence–absence model
predictions when only few presence points are available? We try to
answer this question using a simple virtual species for which both
the complete distribution and the explanatory variables are known
in advance. Model distribution results are mainly conditioned by
three sources of uncertainty: the quality of the dependent vari-
able; the predictive capacity of the selected explanatory variables;
and the modelling technique used to estimate the parameters of
the function. The use of a virtual or artificial species allowed us: (i)
to avoid the bias resulting from contingent or unknown explana-
tory factors; (ii) to eliminate the random noise inherent in real
biological information; and (iii) to calculate true model accuracy
by comparing modelled and virtual distributions. Hence, by using
an artificially constructed virtual species range we control for the
effects of the predictors and the biases in survey data, and are able to
obtain an exact measure of the performance of the models (instead
of estimating it), being able to explore how the quality of the used
biological data can influence model results. Using only ten presence
points selected randomly or in a spatially biased manner from the
whole distribution area, and selecting different numbers of pseudo-
absences both at random and within the unfavourable environ-

Figure 1. Mapped distribution of the virtual species in the Austral South America
region (see Methods).

mental regions, this study showed how these factors influence the
accuracy of predictive models carried out with poor quality data. If
we lack reliable species absence data, is it better to include pseudo-
absence data? How should we choose these pseudo-absence
points? How many pseudo-absence points should we select? Also,
if presence data are not evenly distributed over the whole territory,
how can this bias affect the reliability of our models?

Methods

The virtual species

We mapped the distribution of a virtual species using cur-
rent climate data, and then we used these same climatic data
as predictor variables. The distribution of the virtual species was
mapped in the Austral South American region (80–44◦W longi-
tude, and 56–24◦S latitude), using a spatial resolution of ∼0.04◦

(see Fig. 1). The total extent of the terrestrial studied region was
4,232,951 km2 (246,013 0.04◦ × 0.04◦ cells). Twenty-one climatic
variables were extracted from the WorldClim (Hijmans et al. 2005)
interpolated map database (Table 1). Additionally, we used four
other variables (wind speed, sunshine duration, frost day fre-
quency, and relative humidity) extracted from the Climate Research
Unit (New et al. 2002). These variables were standardised to elimi-
nate measurement-scale effects (0 mean and 1 standard deviation).
To select the minimum number of variables able to represent
the environment of the considered region we used the so-called
Jolliffe’s principal component method (Rencher 2002). First, a Prin-
cipal Component Analysis (PCA) was carried out with all of the
considered variables, and five non-correlated factors with eigen-
values ≥1 were obtained that explained 87.13% of the climatic
variation across the region. For each one of the five PCA factors,
the variable with the highest factor loadings (which measure the
correlations between the original variables and the factor axes)
was selected (>0.8). The five selected variables were annual mean
temperature, isothermality, mean diurnal range, precipitation of
the driest month, and precipitation of the wettest quarter. Rela-
tive humidity was also included as a predictor variable because it
was the only one that was not significantly correlated with any
of the PCA factors. In total, these six variables have been consid-
ered as the most representative of the Austral South American
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Table 1
Climatic variables from which a subset (marked with an asterisk) was selected to
map the virtual species distribution (see text for details).

Annual mean temperature*
Annual precipitation
Frost days frequency
Isothermality*
Maximum annual temperature
Maximum temperature of warmest month
Mean diurnal range*
Mean temperature of coldest quarter
Mean temperature of driest quarter
Mean temperature of warmest quarter
Mean temperature of wettest quarter
Minimum annual temperature
Minimum temperature of coldest month
Precipitation of coldest quarter
Precipitation of driest month*
Precipitation of driest quarter
Precipitation of warmest quarter
Precipitation of wettest month
Precipitation of wettest quarter*
Precipitation seasonality
Relative humidity*
Sunshine duration
Temperature annual range
Temperature seasonality
Wind speed

climate. The distribution of the virtual species was determined only
by these six climatic variables. After calculating the quartiles of
each variable, the true unimodal distribution range of the virtual
species was constructed by including all cells falling within the two
central quartiles of the six climatic variables (Fig. 1). In total, the vir-
tual species had 8616 presence (150,194 km2, around 3.5% of total
terrestrial area), and 237,397 0.04◦ × 0.04◦ absence cells. All geo-
graphic analyses were done with IDRISI Kilimanjaro GIS software
(Clark Labs 2003).

Predictive models

The statistical relationship between the binomial dependent
variables and the environmental predictors was established using
generalised additive models (GAM), a non-parametric regression
method that captures complex response curves and that is tradi-
tionally considered as having very good model performance (see
Segurado & Araújo 2004 and references therein). GAMs models
were fitted in R (www.r-project.org) using the mgcv package.

Models were calibrated using always only ten presences (0.01%
of total presences) and 10, 100, or 1000 pseudo-absences. Pres-
ences were selected at random or in a spatially structured manner
(arranging firstly the cells at random to subsequently select the
10 with higher latitudinal scores). Pseudo-absences were selected
in two different ways: (1) randomly across the whole study area;
or (2) outside the environmental domain previously defined by
the available presence points. The simplest bioclimatic envelope
model (BIOCLIM; Nix 1986), which involves intersecting the ranges
inhabited by the species along each environmental variable, was
used to define the range outside of which pseudo-absences were
selected (see Lobo et al. 2006). The same climatic variables used to
delimit the distribution of the virtual species were used to carry
out the bioclimatic envelope model. The selection of presences and
pseudo-absences were replicated ten times.

To measure how well the predicted map matched the virtual
species distribution, derived probabilities or suitability scores were
transformed into presence–absence data by applying the threshold
which minimises the difference between sensitivity and specificity
(Jiménez-Valverde & Lobo 2006; Jiménez-Valverde & Lobo 2007).
The model distributions that were obtained from this process were

then projected onto the whole study area, and the number of true
presence and absence cases was compared against the predicted
presences and absences (Fielding & Bell 1997). Three main accuracy
measures were calculated from this confusion matrix: (1) speci-
ficity (the proportion of correctly predicted absent cells to the total
number of absences or commission error); (2) sensitivity (the pro-
portion of correctly predicted presences to their total number or
omission error); and (3) the total area that falls under the receiver
operating characteristic (ROC) curve (AUC). Although AUC values
should not be used indiscriminately to compare the accuracy of
models between different species (Lobo et al. 2008) it is an adequate
threshold-independent accuracy measure for within species com-
parisons (Zweig & Campbell 1993; Fielding & Bell 1997; Fielding
2002). To calculate AUC, sensitivity is plotted against 1-specificity
over a number of thresholds (100 in this case), and the area under
the curve (AUC) calculated. AUC, ranges from 0.5 for models that
have no discrimination ability, to 1 for models that have perfect
discrimination.

The effect of the three main factors (number of pseudo-absences,
location of presences and selection of pseudo-absences) on the
three obtained accuracy parameters (i.e. AUC, sensitivity and speci-
ficity) were examined using a multi-factor ANOVA procedure to test
the influence of each factor while controlling for all others, as well
as to detect interaction effects among factors. ANOVA test assume
that the dependent variable is normally distributed and that vari-
ances in the different groups are similar. Although the F statistic
is quite robust against violations of these assumptions, we also
estimated a rank transformation test because accuracy parameters
show slight departures from normality (Kolmogorov–Smirnov one-
sample test scores with probabilities between 0.05 and 0.01). For
this test, all data are ranked from 1 to N, and a new ANOVA com-
puted on ranks (Conover & Iman 1981). This procedure is far more
robust to departures from the assumptions of normality and con-
stant variance allowing multiple comparison procedures (Helsel &
Hirsch 2002).

Results

Both the number of pseudo-absences and the location of pres-
ences (randomly or spatially structured) significantly influenced all
accuracy measures. The interaction between these two factors was
also statistically significant (Table 2) in the case of AUC and speci-
ficity. In contrast, the method applied to select pseudo-absences
does not affect model performance. However, a slightly signifi-
cant interaction occurred between this factor and the number of
pseudo-absences (Table 2), which would indicate that the choice
of pseudo-absences beyond the environmental envelope provided
by the presence data generated better AUC scores only when the
smallest number of pseudo-absences (10) was used.

Models generated with the largest number of pseudo-
absences provided higher AUC scores. However, the percentage
of well-predicted absences did not differ when 1000 and 100
pseudo-absences were used (85% and 86%, respectively; Fig. 2), and
differences in the percentage of well-predicted presences can be
considered negligible (Fig. 2).

Using spatial bias in the selection of presences resulted in worse
AUC scores, mainly because the unavoidable lack of accuracy in
the prediction of true presences (36% are incorrectly predicted as
absences). Interestingly, this bias in the selection of used presences
produces a low level of overprediction (Fig. 2). If presences are
selected at random, 27% of absences are incorrectly predicted as
presences (i.e., more than seven times the area of distribution).

The significant interaction between the number of pseudo-
absences and the location of presences suggest that, if a high
number of pseudo-absences are used, it is possible to obtain high
AUC scores even when presence data are spatially biased. True pres-
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Table 2
ANOVA results (F values) to test variations in model accuracy measures according to the number of pseudo-absences (10, 100 or 1000), the type of pseudo-absences (at
random or outside the environmental envelope defined by presence localities), the location of used presences (at random or spatially structured), and all possible interactions
among these three factors. Scores in brackets are the F ANOVA results computed on ranks (rank transformation test, see Conover & Iman 1981). *≤0.05, **≤0.01, ***≤0.001.

Factors AUC Sensitivity Specificity

Number of pseudo-absences 71.23*** (78.82***) 4.90** (3.99*) 103.66*** (133.36***)
Location of presences 14.92*** (7.11**) 87.99*** (83.84***) 72.91*** (100.00 ***)
Selection of pseudo-absences 0.16 (0.10) 0.31 (0.04) 0.20 (0.21)
Number of pseudo-absences × location of presences 16.98*** (20.28***) 3.07* (0.50) 19.38*** (27.36***)
Selection of pseudo-absences × number of pseudo-absences 4.28* (2.29) 1.23 (0.88) 1.53 (1.81)
Location of presences × selection of pseudo-absences 2.72 (1.56) 1.26 (0.45) 0.63 (0.95)
Location of presences × selection of pseudo-absences × number of absences 0.55 (0.28) 0.08 (0.22) 0.18 (0.12)

ences were always relatively well predicted when presence data
were chosen at random, independent of the number of pseudo-
absences. The advantage of using a high number of absences in
model training is that overprediction occurs less frequently when

presence information is not randomly selected (Fig. 2). In con-
trast, overprediction in the species distribution may occur more
frequently when a few randomly selected pseudo-absences are
used.
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Figure 2. Variation in AUC, specificity and sensitivity scores (mean ± 95% confidence intervals; n = 10) according to the number of pseudo-absences (10, 100 or 1000) and
the location of used presences (at random or spatially structured). Graphs in the right column represent significant interactions among the above-mentioned factors (see
Table 1) in which the number of pseudo-absences are represented by circles of different sizes.
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Discussion

Sampling bias in presence data and number of pseudo-absence
points

Our results showed that, although the reliability of presence pre-
dictions does not increase with the number of pseudo-absences,
the general accuracy of distribution models increases when 1000
pseudo-absences are used because of the low degree of overpre-
diction of these models (less absence localities are erroneously
predicted as presences). The advantage of using a high number of
pseudo-absences is more evident when the presence data in the
training are not homogeneously distributed across the environ-
mental and geographical gradient of the whole study area, because
the percentage of well-predicted absences surpasses 95% when
1000 pseudo-absences are used. In contrast, when the training data
contains evenly distributed presences, the model tends to overpre-
dict the distribution, especially if a low number of pseudo-absences
are used. Overprediction of species distributions is a common
shortcoming of these kind of models, particularly when limited
distribution localities are used (Fielding & Haworth 1995; Araújo
& Williams 2000; Stockwell & Peterson 2002; Brotons et al. 2004;
Segurado & Araújo 2004; Stockman et al. 2006). But, why is over-
prediction less common when available presence data are spatially
structured?

Available presence data may be frequently spatially or environ-
mentally biased (Kadmon et al. 2004; Lobo et al. 2007; Hortal et al.
2007). Under these circumstances, used presences come from an
area with lower environmental variability, and the predictive func-
tion restricts the range of environmental conditions in which the
species can be found. Overprediction in species distribution mod-
els results from the lack of relevant explanatory variables such as
biotic interactions (Austin & Meyers 1996; Fielding & Bell 1997;
Parra et al. 2004; Peterson et al. 1999; Raxworthy et al. 2003), or
the role of spatial autocorrelation (Segurado et al. 2006). However,
we hypothesise that overpredictions are difficult to avoid in species
distribution models, occurring more frequently when the available
presence data come from the whole spectrum of the environmental
conditions that the target species inhabits. Many studies advocate
the use of large and evenly distributed data in predictive distri-
bution models (see for example Hirzel et al. 2001; Stockwell &
Peterson 2002; Zaniewski et al. 2002; Engler et al. 2004 or Reese et
al. 2005). We do not suggest otherwise, however, we believe that
there may be a greater tendency for modelling methods to over-
predict species ranges when unreliable absence data is used (Lobo
et al. 2010) and the available presence data used to train the model
are scarce and at the same time homogeneously distributed along
the environmental space.

Additionally, because most of the data for rare, endangered,
or poorly surveyed species is generally environmentally and geo-
graphically biased, we also recommend that, regardless of the
quantity and quality of available presence data, a high number of
pseudo-absences should be used in modelling the distribution of
these species (Jiménez-Valverde & Lobo 2006). Thus, when pres-
ence data is limited, more pseudo-absences should be incorporated
to obtain more accurate predictive models. Minority-class predic-
tions have a higher error rate than majority-class predictions (if
there is no evidence favouring one classification over another, mod-
elling methods tend to predict the majority class; see Weiss &
Provost 2003). Thus, highly unbalanced designs (such as those hav-
ing many pseudo-absences) facilitate the correct classification of
the absence zone, but increase the misclassification of the pres-
ence zone, which is a desirable property when models are used for
conservation purposes (see below). Austin & Meyers (1996) sug-
gested restricting model calculations within the species’ known
environmental range, excluding the so-called “naughty noughts’.

In contrast, Thuiller et al. (2004) proposed including a large part
of the environmental combinations where the species currently
occur or not. We agree with this last proposal; including many
pseudo-absences in the training data: (i) increases the likelihood of
representing all truly negative environmental regions; (ii) results
in more complete response curves; (iii) maximises the explanatory
capacity of the used environmental variables; and (iv) generates
models with a lower rate of overprediction. Austin (2006) recently
stated, “conclusions about the response curve of species can only be
unambiguously determined if the sampled environmental gradient
clearly exceeds the upper and lower limits of the species occur-
rence”. More recently, Lobo et al. (2010) show that those absences
from outside the environmental conditions determined by the
presences are useful provided they are not excessively extreme.
Hence, we recommend the use of a high number of environmen-
tally weighted pseudo-absences able to cover all the environmental
conditions in which the species is absent, but mainly those present
at the environmental boundary between presences and absences.
Of course, in this case, there is no issue regarding the use of the
percentage of explained variability as a measure of model perfor-
mance, which must be assessed by a correct validation procedure
with independent data (Vaughan & Ormerod 2003, 2005).

How many pseudo-absences should we select to carry out pre-
dictive distribution models with limited presence data? It is widely
recognised among statisticians that the recommendable sample
size in logistic regressions must be at least ten times the number of
explanatory variables (Peduzzi et al. 1996). Therefore, when pres-
ence data is limited, we suggest incorporating many absences in
order to increase the sample size. Monte Carlo simulations based
on species with more than 200 observations have indicated that
the mean accuracy of prediction reaches its maximum asymptotic
value at about 100 observations (Kadmon et al. 2003). However, if
presence data is limited, sample size should be substantially larger.
Dixon et al. (2005) have estimated that, when an event is truly rare,
its probability estimate has reasonable precision only if the sam-
ple size exceeds 1000 total observations. In our case, increasing the
number of presences from 10 to 100 and to 1000 decreased the
coefficient of variation of these probability estimates from 117%
to 50% and 16%, respectively (see Dixon et al. 2005 for calcula-
tions). This last precision score is considered acceptable. Therefore,
to avoid excessively unbalanced designs (King & Zeng 2001) when
we have limited presence data, we suggest selecting 100 times
more pseudo-absences than presences. Again, unbalanced train-
ing data does not necessarily always result in inaccurate models
(see Jiménez-Valverde et al. 2009). Machine learning algorithms
perform well in very unbalanced designs (Prati et al. 2004), and an
appropriate threshold to convert derived probabilities into a bino-
mial variable can be used to avoid inaccuracies (Jiménez-Valverde
& Lobo 2006).

Pseudo-absences and extent

In our case, the virtual species only inhabited 3.5% of the total
study area. Because of this low ratio between the area of the species
distribution and the whole extent of the modelled territory (the
ROA or relative occurrence area; Lobo et al. 2008), there was lit-
tle difference between randomly and environmentally selected
pseudo-absences. Our results suggested that, when a small number
of pseudo-absences are used, they should be selected in areas falling
outside the environmental envelope defined by presence localities.
Thus, as this type of pseudo-absence selection improves the results
at lower relative occurrence areas, we suggest using this strategy
for selecting pseudo-absence when there are no better alternatives
for obtaining reliable absence data (see for example Lütolf et al.
2006). The influence of ROA in model distribution performance
requires further investigation (but see Bulluck et al. 2006 and
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VanDerWal et al. 2009). It is generally assumed that distribution
models of restricted-range species generally perform better than
those of widespread species (Araújo & Williams 2000; Segurado &
Araújo 2004; Brotons et al. 2004). We suspect that this improved
performance of the model may be influenced by the higher proba-
bility of selecting reliable absence data at random when there is a
low relative occurrence area.

The recommendations provided by our study should be consid-
ered with caution when the target species do not inhabit all the
territory with suitable environmental conditions (not in equilib-
rium with environmental conditions; see Araújo & Pearson 2005).
In this case, models using environmentally weighted pseudo-
absences will result in high rates of overprediction. Only an
adequate selection of absence data together with the inclusion of
predictors able to represent the role played by the processes that
hinder the presence of a species under environmentally favourable
conditions can improve the results of the models under these cir-
cumstances (Kadmon et al. 2003; Guo et al. 2005; Chefaoui & Lobo
2008; Lobo et al. 2010).
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