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ABSTRACT

Aim Quantifying species abundances is costly, especially when many species are

involved. To overcome this problem, several studies have predicted local abun-

dances (at the sample unit level) from species occurrence distribution models

(SODMs), with differences in predictive performance among studies. Surprisingly,

the ability of SODM to predict regional abundances of an entire area of interest

has never been tested, despite the fact that it is an essential parameter for species

conservation and management. We tested whether local and regional abundances

of 21 terrestrial bird species could be predicted from SODMs in an exhaustively

surveyed island, and examined the variation explained by species-specific traits.

Location La Palma Island, Canary Islands.

Methods We firstly assessed two types of algorithms representing the two

main families of SODMs. We built models using presence/absence (boosted

classification trees) and presence/background (MaxEnt) data as a function of

relevant environmental predictors and tested their ability to predict the

observed local abundances. The predicted probabilities of occurrence (Pi) were

translated into animal numbers (n0) using the revisited equation ni
0 = �ln

(1�Pi), and we obtained regional abundances (for the whole island).

Results Predictive ability of presence/absence models was superior than that of

MaxEnt. At the regional level, the observed average densities of all species were

highly predictable from occurrence probabilities (R2 = 93.5%), without overall

overestimation or underestimation. Interspecific variation in the accuracy of

predicted regional density was largely explained (R2 = 73%), with habitat

breath and variation in local abundance being the traits of greatest importance.

Main conclusions Despite uncertainties associated with local predictions and

the idiosyncrasies of each species, our procedures enabled us to predict regional

abundances in an unbiased way. Our approach provides a cost-effective tool

when a large number of species are involved. Furthermore, the influence of

species-specific traits on the prediction accuracy provides insights into sampling

designs for focal species.

Keywords
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phy, MaxEnt, species abundance, species distribution modelling.

INTRODUCTION

Organism abundance and richness are recognized as two of

the most important components of biological diversity. Mea-

sures of species abundance for biodiversity assessments

provide useful information, from aspects of population

dynamics and biotic interactions to ecosystem functioning

(e.g. Estes et al., 1998; Yamamoto et al., 2007). Moreover,

human-mediated changes in biodiversity are detected more

quickly using abundance measurements than accounting for
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other biodiversity components (Chapin et al., 2000). How-

ever, quantifying species abundances is challenging because it

is costly in terms of time, and human and economic

resources. In contrast, the number of studies analysing vari-

ables derived from species presences is becoming dispropor-

tionately higher than those making use of measures of

abundance (Guisan & Thuiller, 2005; Rodr�ıguez et al., 2007).

To overcome this problem, several studies aimed to predict

species abundance from species occurrence distribution mod-

els (SODMs; e.g. Conlisk et al., 2009 and references therein).

Thus, linking successfully distributional occurrence data with

abundance through relevant factors should provide a useful

tool because species presence data are easier to obtain, which

opens the possibility of coordinating volunteer programs in

field survey designs.

However, the extent to which SODM outputs are able to

precisely predict local abundances or densities remains con-

troversial (Pearce & Ferrier, 2001; Nielsen et al., 2005;

Jim�enez-Valverde et al., 2009; Estrada & Arroyo, 2012; Van

Couwenberghe et al., 2013; Bean et al., 2014; Thuiller et al.,

2014; Ya~nez-Arenas et al., 2014; Russell et al., 2015). Despite

potential limitations of SODMs to account for local abun-

dances (Pearce & Ferrier, 2001; Nielsen et al., 2005), their

ability to predict the total count of individuals in the whole

study area (hereafter regional abundance) is unknown. When

the central limit theorem holds (Grinstead & Snell, 1997),

local overpredictions and underpredictions can be counter-

acted because they are randomly and equally distributed. In

this case, regional abundances could be accurately predicted

even in cases of moderate ability of SODMs to predict local

abundances.

Among the SODM types, there are also differences regard-

ing the difficulty of obtaining distributional data, mainly

depending on whether they makes use of presence/absence

or only true presences. Recording presence/absence data

requires greater survey effort than presence-only data because

uncertainties associated with absences are greater (Jim�enez-

Valverde et al., 2008). Moreover, part of the variability

regarding the ability of SODM to predict abundances might

be influenced by whether or not true absences are assumed

(Nielsen et al., 2005; VanDerWal et al., 2009). Therefore,

elucidating the extent to which obtaining absence data merits

additional survey efforts needs to solve the trade-off between

feasibility and effectiveness when predicting abundances from

SODMs. Comparisons between SODM outputs, considering

they include or not reliable absence data, may help to exam-

ine the variability in the relationships between probability/

suitability values and abundance estimations.

In the same way, species-specific traits linked with natural

history are also sources of variability in model accuracy to

predict species’ distributions and abundances. This inter-

specific variability limits the predictive power of modelling

exercises, a limitation that cannot be always overcome by

mere statistical refinements (Seoane et al., 2005). Several

studies have shown that ecological and natural history traits

of species may predict the errors in SODMs (Boone &

Krohn, 1999; Kadmon et al., 2003; Carrascal et al., 2006).

For example, modelling success is inversely related to spatial

variability (mobility and nomadism) and niche breadth,

although the observed patterns are not consistent across all

biological groups (Pearce & Ferrier, 2000; Pearce et al.,

2001). Similar species-specific variations in modelling success

have been found considering the positive effects of common-

ness, abundance and detectability (Boone & Krohn, 1999;

Kadmon et al., 2003). Therefore, the analysis of the associa-

tion between species’ biological traits and model accuracy is

useful because if we know the effect of specific traits on

modelling results, we can improve the sampling design for

multispecies studies (Seoane et al., 2005).

In this study, we examined whether local and regional

abundances of a group of terrestrial bird species can be pre-

dicted from SODMs in La Palma, a Macaronesian island in

the Canary archipelago. An exhaustive field survey was car-

ried out to record presence/absence data and abundances of

twenty-one bird species throughout a representative sample

of transects encompassing the spatial and environmental

range of the island. First, for each species, we built distribu-

tion models for La Palma Island using presence/absence or

presence/background data as a function of relevant environ-

mental predictors. Second, we compared the ability of these

two types of models to predict the observed local abundances

of the studied bird species. Third, we used the type of

SODM that derived better local predictions to obtain estima-

tions of regional abundances. For this purpose, SODM out-

puts were converted to abundances by means of a previously

proposed and well-founded procedure in the early seventies,

the binomial sampling to estimate average densities (Gerrard

& Chiang, 1970). This conversion has been rarely applied for

organisms other than arthropods but merits further evalua-

tion, because it does not require complex parameterizations.

Our predictions of regional abundances were then evaluated

using total number of birds recorded in the field. Fourth, we

performed an analysis including all species to elucidate spe-

cies-specific traits that can potentially explain the interspeci-

fic variation in the regional abundance estimations. To our

knowledge, this is the first time that the ability of SODM to

predict species regional abundances has been examined.

METHODS

Study area

The study area is located in La Palma (28�420 N, 17�500 W;

706 km2) a young (1–2 Myr) oceanic island of the Canary

archipelago located 417 km from the African coast. It is a

high island (2426 m a.s.l.), with extensive areas with annual

precipitation higher than 600 mm, and with a widespread

representation of native shrublands and pine and evergreen

‘laurisilva’ forests (although natural cover has been much

reduced since humans occupied the islands: de Nascimento

et al., 2009). A considerable proportion of island area below

1100 m a.s.l. has been highly transformed by agricultural
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activities and urban sprawl. See Juan et al. (2000) and

Fern�andez-Palacios & Mart�ın-Esquivel (2001) for more

details on island characteristics.

Abundance estimations

Bird censuses, devoted to record presence/absence and abun-

dance data, were carried out during the breeding season (April

2007). The survey method was the line transect, frequently

used in extensive assessments of abundance, general distribu-

tion patterns and habitat preferences of birds (Bibby et al.,

2000). Fieldwork was designed as a broad-scale sampling for

land birds. Thus, censuses were carried out across the whole

island in an attempt to sample the total range of vegetation

types, land-use types and degrees of slope (see Seoane et al.,

2011 for a detailed description on the sampling protocol). We

recorded all birds heard or seen without a detection limit dis-

tance, distinguishing between those registered inside and out-

side the survey belt of 25 m at each side of the progression

line, to estimate a measurement of detectability. All censuses

were carried out on windless and rainless days, at a low speed

(ca. 1–3 km h�1), early in the morning (7:00–11:00 GMT) or

late in the evening (16:00–17:30 GMT).

Transects were 0.5-km sample units of homogeneous habi-

tat structure. They were measured and georeferenced with

portable GPS (precision of �2 m by means of the average

location function). The starting point of transects was ran-

domly determined, and then, the rest of 0.5-km samples

were performed one after the other (n = 437 transects). We

feel confident in assuming that these transects provide a rep-

resentative sample of broad habitat classes present in La

Palma Island (see Fig. 1).

A surrogate of detectability was built as the ratio of the

birds belonging to each species observed inside the transect

belt of 25 m at both sides of the observer, to the total num-

ber of birds detected (i.e. the ratio p of main belt to total

belt observations). This index reflects important species char-

acteristics related to the interaction with the observer, such

as song or call intensity and audibility, conspicuousness and

mobility (J€arvinen & V€ais€anen, 1975). Density estimations,

accounting for species-specific detectability, were calculated

using the following equation (J€arvinen & V€ais€anen, 1975;

J€arvinen, 1978):

D = (N 9 k) L�1

being k = (1�(1�p)0.5)/0.025

where D is the density in birds per km2, N is the number of

detected birds, k is a detectability coefficient, L is the transect

length in km, and p is the ratio of main belt to total belt obser-

vations of each bird species (0.025 is transect belt of 25 m

expressed in km). This is a convenient approach to account for

differences in detection probabilities among species in highly

vegetated environments, when measuring exact distances to

each individual bird is not feasible because devices such as

laser range finders cannot be applied precisely to birds heard

but not seen in densely vegetated habitats.

Environmental predictors

Models were built with environmental predictors that have

been shown to play a role in shaping the distributions and/

or abundances of birds at our spatial resolution, such as

those expressing vegetation structure, primary productivity,

topography and human impact (Seoane et al., 2005; Mcfar-

land et al., 2012). The vegetation structure categories were

assigned to each transect based on an existing map of plant

communities in the Canary Islands (Del Arco et al., 2003).

The following ten broad classes were identified: volcanic

fields (‘malpa�ıses’), pasturelands, Euphorbia shrublands,

scrublands, tall heathlands (‘fayal-brezal’), evergreen forests

(‘laurisilva’), pine forests of Pinus canariensis, rocky slopes

with scattered plants (‘cerrillar’), agricultural habitats and

urban areas. For each transect, we also measured the mini-

mum distance to these habitats using ArcGis. The altitude,

cardinal direction and the terrain slope in the centre of each

transect were obtained from a digital model (100-m spatial

resolution). As an indicator of primary productivity, we

quantified photosynthetic activity using a normalized

difference vegetation index (NDVI). Raw NDVI data were

10-day synthesis obtained from the sensor VEGETATION

onboard the SPOT satellite, averaging data for March to June

of the sampling year and discarding cloudy pixels. Addition-

ally, to increase prediction capacity of models, we also used

UTM latitude and longitude in metres to absorb potential

remaining spatial variation not explained by vegetation and

Figure 1 Location of 437 0.5-km transects in La Palma Island.

Each dot represents the centre of the 0.5-km transects. The

background map shows the topography of the island.
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topography. All these data were also obtained for the centre

of all UTM 500 m 9 500 m squares of La Palma Island

(n = 3263).

Species occurrence distribution models

Boosted classification trees (BCT) were employed to assess

the probability of occurrence (presence-1/absence-0) of each

species in the sample of 437 transects of 0.5-km using the

16 formerly mentioned predictor variables. The BCT algo-

rithm builds a number of regression trees (typically hun-

dreds) in a stagewise fashion on randomly selected subsets

of data and combines them to improve predictive perfor-

mance (see for details: De’ Ath, 2007; Elith et al., 2008). We

used a fivefold approach to test the accuracy of predictions

of BCT models. As outputs from boosting are not well cali-

brated, posterior probabilities predictions of BCT models

were calibrated applying a logit function to transform boost-

ing predictions with a sigmoid function (Niculescu-Mizil &

Caruana, 2005).

To compare BCT predictions with those provided when

accurate absence data does not exist, occurrences for each

species were also modelled using the MaxEnt algorithm

(Phillips et al., 2006; Phillips & Dudik, 2008). We selected

this modelling technique because it is a widely used proce-

dure when only presences are available, and is also a machine

learning method. As in the classic resource selection func-

tions of use–availability designs (Manly et al., 2002), MaxEnt

generates suitability outputs from presence data and a pool

of background absences selected at random from the study

area using a maximum entropy approach (Pearce & Boyce,

2006; Phillips et al., 2006). In our case, these background

absences were selected out of the UTM squares in which

transects occur and equal in numbers to those used in BCT

models for each species (range: 44–420; average = 335). This

approach has been chosen to (1) avoid the use of true

absences as background absences and (2) to ease the compar-

ison of model outputs using an identical number of true

absences (in BCT) and background absences (in MaxEnt).

Moreover, for MaxEnt, the fivefold data split into training

and testing subsets was the same as for the BCT models

within each species. Thus, our data arrangement will enable

more direct inferences regarding the use of reliable absences

in models while keeping other sources of intermodel variabil-

ity as fixed as possible.

The discrimination ability of BCT and MaxEnt models to

predict each species’ distribution was compared through the

area under the curve (AUC) of the receiver operating charac-

teristic (ROC) plot of sensitivity against 1-specificity (Field-

ing & Bell, 1997). AUC values should not be interpreted

uncritically, and one of the major misuses is relying on abso-

lute values to compare among species with different preva-

lences (Lobo et al., 2008). In spite of this, its use in a

relative way may be useful to compare among modelling

techniques within species with identical prevalences (Arag�on

& S�anchez-Fern�andez, 2013).

Predicting local and regional abundances from

occurrence distribution models

Firstly, we aimed to assess the general ability of presence/ab-

sence models (BCT) and presence/background absence mod-

els (MaxEnt) to predict local abundances at the transect

level. For this purpose, we estimated separately for each spe-

cies the Pearson correlations of the relationships between

observed abundances in transects and SODM outputs (the

predicted habitat suitabilities using MaxEnt or probabilities

of occurrence using BCT). Sequential Bonferroni adjustment

was applied to these analyses to control for type I errors

(Benjamini & Hochberg, 1995). Then, we used a paired t-test

to compare between the Pearson correlation coefficients

obtained for each species separately with BCT outputs and

those obtained with MaxEnt outputs. In addition, we

assessed the degree of triangularity in the relationships

between observed local abundances and model outputs sepa-

rately for each species (see Appendix S1).

As use–availability models, such as MaxEnt, are unable to

predict the probability of occurrence (Hastie & Fithian,

2013), BCT probabilities of occurrence were subsequently

used to obtain regional abundance estimations. For this pur-

pose, we firstly converted the probabilities of occurrence to

bird numbers applying a procedure that has been shown to

be appropriate for the case of outputs from presence/absence

models. The predicted probabilities of occurrence for each

transect (Pi) derived from BCT models were converted to

predicted bird numbers for each species (ni
0) using the fol-

lowing expression under the assumption of random distribu-

tions with Poisson distributed populations (Gerrard &

Chiang, 1970; Gerrard & Cook, 1972) as follows:

ni
0= �ln (1�Pi)

The summation of the predicted ni
0 figures for each spe-

cies (∑ni0) was used to estimate its resemblance to the true

number of birds counted in the whole sample (∑ni) of 437

transects that equal 218.5 km. These numbers were trans-

formed in regional densities (DENREG; birds km�2) consid-

ering the above-mentioned formula by J€arvinen & V€ais€anen

(1975). Finally, we performed a Pearson correlation to esti-

mate the relationship between predicted and observed regio-

nal densities for the 21 bird species recorded. Additionally,

we used t-tests to assess whether this predicted regression

line deviated significantly from the equality between the

observed and predicted densities.

Interspecific variation in prediction accuracy of

regional density

Interspecific variation in the prediction accuracy of densities

using BCT models was characterized by calculating the per-

centage difference between predicted and observed regional

densities in relation to observed regional density (hereafter

% change). The thus obtained % change was then related to

several autoecological traits of the species: species prevalence
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in the whole sample of transects (range: 0.04–0.90), coeffi-
cient of variation in bird numbers when each species was

present (30–167%), a surrogate of detectability (as measured

by the ratio p of main belt to total belt observations of each

bird species – see above; range: 0.22–0.89), body mass (5.8–
480 g; obtained from Perrins, 1998 as the mean weight of

males and females, or as the average value of body weight

range in spring and summer), and habitat breadth (0.14–
0.74) and ecological density (3.5–248.1 birds km�2) esti-

mated for the most preferred habitat (these two last variables

obtained from Appendix B of Seoane et al., 2011).

All possible subsets of the predictors using general linear

models were estimated (64 models) and were compared with

second-order AIC corrected for small sample sizes (AICc;

Burnham & Anderson, 2002) to assess their weights of evi-

dence. The strength of evidence of models was obtained

using weights (Wi) derived from AICc figures, using all pos-

sible models (R package glmulti). Parameter estimates (stan-

dardized regression coefficients, b; R2 of models) were

averaged using model weights (Wi; Arnold, 2010).

RESULTS

Accuracy of species distribution models

As AUC values were obtained by fivefold cross-validation,

predictions of bird distributions from both BCT and MaxEnt

models can be considered excellent or good according to

usual performance criteria (Swets 1988) (n = 21; mean

AUCs � SD: BCT = 0.835 � 0.118; MaxEnt = 0.792 �
0.128; Table 1). AUCs for BCT and MaxEnt models were

significantly and positively correlated (Pearson’s correlation:

r = 0.693; P = 0.0005) although BCT figures were slightly

higher than those obtained with MaxEnt (paired

t-test = 2.073, P = 0.051, Table 1).

Predicting bird local and regional abundances from

distribution models

Probabilities of occurrence (from BCT) and habitat suitabil-

ity values (from MaxEnt) were positively and significantly

associated with their corresponding observed abundances for

nearly all species using transects as sample units (see Pear-

son’s correlation coefficients in Table 1). The exceptions

were Phylloscopus canariensis and Streptopelia turtur for Max-

Ent outputs, where relationships with abundance were not

significant after sequential Bonferroni corrections. The

strength of association between model predictions and

observed abundances was considerably higher for BCT than

for MaxEnt models (paired t-test = 10.792; P < 0.001;

n = 21 species). On the other hand, the triangular relation-

ship assessed with quantile regressions was always present

and was not different between BCT and MaxEnt results (see

Appendix S1).

At the regional level (i.e. using the whole sample of tran-

sects in the island), the observed average densities per species

were highly correlated with those predicted by BCT occur-

rence probabilities (Pi) when converted to regional densities

(i.e. ∑�ln[1�Pi] for transects i = 1 to i = 437; r = 0.967;

P � 0.001; Table 1; Fig. 2). Coefficients a and b in the

equation OBSERVED = a + b�PREDICTED did not signifi-

cantly differ from zero and one, respectively (a = 3.5,

SE = 3.25; b = 1.014, SE = 0.061; P > 0.2 in both t-tests;

Fig. 2). Therefore, the observed and predicted regional densi-

ties are operatively interchangeable. Moreover, % of differ-

ence between predicted and observed regional density was

close to zero (mean % difference = �0.076, SE = 7.97).

Thus, there was no overall bias towards either overestimation

or underestimation of bird abundance at the regional level.

Interspecific variation in prediction accuracy of

regional density

Interspecific variation in the accuracy of predicted average

density at regional scale (i.e. the average density in the whole

sample of transects) was explained to a great amount (73%

of variance) by a weighted average model. The variability in

bird counts when the species was present, habitat breadth,

prevalence in the sample of transects and regional maximum

density were the most influential variables (ΣWi ≥ 0.4;

Table 2). The variable most affecting the accuracy of pre-

dicted regional density was the variability in bird counts

measured by the coefficient of variation (CV%; ΣWi = 1,

with the largest absolute value of the standardized regression

coefficient; Fig. 3a). Habitat breadth had also a similarly high

importance, although its magnitude effect was lower (b coef-

ficients in Table 2; see Fig. 3b). Summarizing, predicted

regional abundance tended to be underestimated in those

species which occupy a narrow range of habitats and show a

large variability in numbers when present. High prevalence

in the sample and high density in the most preferred habitat

also tended to underestimate regional estimates.

DISCUSSION

In this study, we examined the extent to which the continu-

ous predictions obtained from species’ presence/absence

(probabilities of occurrence from boosted classification trees)

or presence/background (suitabilities from MaxEnt) models

can predict species abundances, either at local (sampling

units) or at a regional level (La Palma Island). To allow

comparisons between presence/absence and presences/back-

ground models, prevalences and fivefold partitions were kept

identical in both modelling procedures for each species,

while the only difference was the use of observed absences

vs. background random data. Although the accuracy of pres-

ence/absence models was only slightly higher than that of

presence/background models in predicting the occurrence of

species, the ability to predict observed local abundances was

clearly superior for presence/absence models using BCT. As

we designed an experimental protocol to rule out the influ-

ence of differences in the prevalence of training data, our
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results reveal that the differences found between MaxEnt and

BCT were due to the algorithm used and/or to the nature of

the non-presence data (absences/background) independently

of the prevalence. Our results are robust because predicted

occurrence probabilities derived from SODMs were obtained

from fivefold cross-validations with data not used to build

models.

An important difference between modelling with presence/

absence and with presence-only data is that the latter oper-

ates with background data (a mixture of unrecorded

absences and presences), inflating thus the number of false

absences to an unknown degree (Lobo et al., 2008). As a

consequence, the use of background data is less appropriate

to estimate abundances from occurrence data. Our results

support the use of presence/absence sampling protocols to

predict animal abundance even at the local scale, although

better results were obtained by combining these predictions

to infer regional abundances (i.e. the total number of indi-

viduals per species recorded in the whole sample of line tran-

sects carried out in La Palma Island). Despite the fact that

the relationships between SODM outputs and observed local

abundances tended to be triangular (see Appendix S1), our

estimations at the regional level turned out to be highly pre-

cise after applying the simplest transformation, assuming

Poisson distributed populations, proposed by Gerrard &

Chiang (1970). This is clearly shown by the fact that the

regression line nearly represents the perfect equivalency

between predicted and observed average bird densities in La

Palma island (Table 1; Fig. 2).

Table 1 Summary of model results for 21 bird species in La Palma Island (Canary Islands, Spain).

Species MaxEnt AUC BCT AUC r MaxEnt r BCT DENREG pred DENREG est % change

Alectoris barbara 0.796 0.709 0.287 0.633 2.5 2.6 �2.9

Anthus berthelotii 0.892 0.895 0.624 0.818 14.5 13.4 7.7

Carduelis cannabina 0.683 0.680 0.141 0.714 1.4 2.6 �45.9

Columba bolli 0.985 0.944 0.754 0.853 6.7 7.9 �16.2

Columba junoniae 0.954 0.868 0.634 0.863 14.0 12.0 16.5

Columba livia 0.707 0.780 0.332 0.682 23.7 74.1 �68.0

Erithacus rubecula 0.872 0.921 0.550 0.864 25.3 25.9 �2.3

Falco tinnunculus 0.594 0.647 0.119 0.731 6.4 3.8 68.1

Fringilla coelebs 0.862 0.922 0.551 0.806 31.6 37.4 �15.6

Motacilla cinerea 0.908 0.901 0.472 0.847 8.9 5.3 67.3

Parus caeruleus 0.757 0.815 0.349 0.759 25.5 22.9 11.2

Phylloscopus canariensis 0.580 0.932 0.091 0.635 188.1 186.5 0.9

Pyrrhocorax pyrrhocorax 0.599 0.643 0.154 0.644 7.3 15.4 �52.7

Regulus regulus 0.866 0.941 0.576 0.823 81.2 93.5 �13.1

Serinus canaria 0.668 0.890 0.344 0.799 78.5 89.4 �12.3

Streptopelia decaocto 0.940 0.965 0.611 0.803 11.5 17.7 �35.1

Streptopelia turtur 0.610 0.559 0.083 0.751 7.7 4.6 68.3

Sylvia atricapilla 0.864 0.904 0.575 0.818 36.5 40.3 �9.5

Sylvia conspicillata 0.789 0.847 0.268 0.736 5.4 4.4 22.2

Sylvia melanocephala 0.871 0.882 0.561 0.831 23.2 20.3 14.7

Turdus merula 0.834 0.908 0.536 0.810 70.4 74.1 �4.9

MaxEnt AUC, AUC values from MaxEnt models; BCT AUC, AUC values from boosted classification tree models; r MaxEnt, correlation coeffi-

cients from Pearson’s correlations between MaxEnt outputs and estimated specie’s local abundances; r BCT, coefficients from Pearson’s correla-

tions between BCT outputs and estimated specie’s local abundances (significant correlations at P < 0.05 after sequential Bonferroni correction are

shown in bold type); DENREG pred, average regional density (birds km�2) predicted from transformed BCT probabilities in all transects; DEN-

REG est, estimated regional density (birds km�2) derived from all transects; % change, % difference between predicted and estimated regional

densities in relation to estimated regional density. Predictions were obtained from fivefold cross-validations. Data on species presences/absences

were obtained from 437 transects covering all habitats of the island.

Figure 2 Linear relationship between predicted and estimated

average regional densities for 21 species in La Palma Island

(Canary Islands, Spain). Predictions were obtained from fivefold

cross-validated boosted classification trees, whose outputs were

converted to regional densities (through �ln [1�p]; see

Methods). Solid line denotes the regression line and dashed line

denotes equality between the estimated and predicted densities.
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Although several studies have focused on the ability of

SODMs to predict local abundances (Nielsen et al., 2005;

Seoane et al., 2005; Jim�enez-Valverde et al., 2009; Estrada &

Arroyo, 2012; Bean et al., 2014; Thuiller et al., 2014; Ya~nez-

Arenas et al., 2014; Russell et al., 2015), showing generally

that they only allow for the demarcation of the upper limit

of the observed abundances (e.g. VanDerWal et al., 2009;

Tôrres et al., 2012), little is known about the usefulness of

occurrence data to predict regional abundances (i.e. number

of individuals or densities). The advantage of the approach

applied here at the regional level is that the same transforma-

tion is applied for all species, and hence, it can be used as an

alternative to specific parameterizations proposed in other

studies for each species separately (e.g. VanDerWal et al.,

2009). We propose that this procedure is especially appropri-

ate and cost-effective when the aim is to infer regional abun-

dances of large sets of species under sampling restrictions, as

often occur in biodiversity studies. Thus, our procedure to

predict average regional densities can be a powerful tool in

cases of biodiversity assessment in poorly known regions or

remote areas. Furthermore, we may be interested in examin-

ing the potential effect of an ecological perturbation by com-

paring species abundances in the target area before and after

the perturbation occurred, or between the disturbed and

other neighbouring areas. In the same vein, this procedure

can provide insights in the context of reserve design; com-

paring predicted regional densities among contiguous areas

with different protection status would help to make decisions

when reviewing their protection capacity. It is remarkable

that studies on reserve design selection are often based on

species representation (Ara�ujo et al., 2007), analogous proce-

dures based on probabilities of occurrence are scarce (Cabeza

et al., 2004), and there is a general lack of approaches deal-

ing with abundances in many organisms (apart from birds,

considering their attractiveness for citizen science projects).

The high accuracy of the procedure used here to predict

regional densities from SODM outputs with true presence/

absences suggests its potential value when working with

organisms for which census programs dealing with abun-

dances are not the norm or are not feasible.

At the regional scale, we found that the interspecific vari-

ation in prediction accuracy of regional abundance can be

explained by species-specific traits related to distribution

patterns and habitat preferences. This is in line with previ-

ous studies showing that autoecological traits may affect

model performance in predicting species distributions from

observed presences/absences (Hernandez et al., 2006), abun-

dances from observed abundances (Seoane et al., 2005; Car-

rascal et al., 2006) and abundances from occurrence

probabilities (Nielsen et al., 2005; Jim�enez-Valverde et al.,

2009; Estrada & Arroyo, 2012; Russell et al., 2015). Habitat

breath and the coefficient of variation in bird numbers were

specific traits with higher relative importance in explaining

the interspecific variation in predicting regional densities.

Bird species with a greater habitat breadth, such as Falco

tinnunculus and S. turtur, tended to be overestimated

(Fig. 3b, see Appendix S2). Species inhabiting a greater

number of habitat types can be associated with a greater

Table 2 Alternative models for interspecific variation in large-scale prediction accuracy of bird density in 21 species inhabiting La

Palma Island (Canary Islands, Spain). Accuracy is measured as the percentage of variation of predicted average densities with respect to

estimated average densities of birds in the whole sample of the 437 0.5-km line transects (see % change in Table 1). Only models with

DAICc < 2 are shown for brevity. Multimodel inference (lower part of the table) has been obtained considering all the possible

combinations of predictors (64 models), averaging the results according model weights (Wi). Figures for each variable are standardized

regression coefficients (b) obtained in general linear models. For each variable, ΣWi is the sum of weights of the models in which the

variable appears, weighted average b is the weighted average of standardized regression coefficients and se b the unconditional standard

errors.

Standardized regression coefficients (b)

R2 (%) Wi AICcPREV CV% DETECT HB DMAX MASS

Large-scale accuracy

Model 1 �0.718 0.280 �0.351 75.0 0.166 194.6

Model 2 �0.450 �0.726 0.463 74.9 0.155 194.7

Model 3 �0.607 �0.674 0.568 �0.224 78.6 0.111 195.3

Model 4 �0.765 �0.242 68.5 0.081 196.0

Model 5 �0.792 62.7 0.066 196.4

Multimodel inference

ΣWi 0.438 1.000 0.185 0.632 0.483 0.268

Weighted average b �0.150 �0.737 �0.019 0.246 �0.165 �0.046 72.7

SE b 0.265 0.139 0.054 0.242 0.212 0.086

AICc, AIC corrected for small sample sizes; R2, variance explained by each model (in %); CV%, coefficient of variation in bird numbers in tran-

sects where each species occurred; HB, habitat breadth considering 11 different habitats; PREV, prevalence of each species in the sample of 437

0.5-km line transects; DETECT, ratio of main belt (25 m) to total belt observations of each bird species (larger figures correspond to less detect-

able species); MASS, body mass of species (in log); DMAX, maximum density recorded in 11 different habitats. See Appendix S2 for more details

on species characteristics. Models 1–5 are highly significant (P < 0.001) using the classical frequentist approach.
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range of environmental variation, and hence, predictions

might be closer to the upper part of their potential. It is

also plausible that species with broad niches are at lower

numbers than the expected potential simply because other

biologically relevant factors not included in the models

might be also shaping subtle variations in their abundances.

Thus, species with larger habitat breadths may be more sen-

sitive to the exclusion of unknown relevant factors in mod-

els, which result in a greater mismatch between observed

and predicted abundances. Whatever the processes involved,

it appears that environmental tolerance governs both species

occurrence distributions and abundances, because it has

been shown to affect the accuracy of SODM and abundance

models (Seoane et al., 2005; Carrascal et al., 2006; Hernan-

dez et al., 2006).

Species with higher coefficients of variation of local abun-

dance when present, such as Pyrrhocorax pyrrhocorax, Cardu-

elis cannabina and Columba livia (e.g. from 1 to 30

individuals as opposed to ranges of 1–3 individuals), tended

to be underestimated. The coefficient of variation may be

linked to the within-species variation regarding grouping

behaviour or environmental fine-grained variables affecting

animal abundance not included in the models (e.g. habitat

structure, food availability, substrata for nesting). Estrada &

Arroyo (2012) found that differences between two harrier

species regarding the degree of association between SODM

outputs and abundances could be explained by the degree of

gregariousness and by the interspecific variation in the use of

social information for site selection. Thus, it is possible that

the within- and among-species variation in grouping beha-

viour affects abundance predictions intra- and interspecifi-

cally. Finally, our results show that among the species traits

considered, detectability had the lowest relative importance

in explaining deviations from the observed regional density.

In fact, it has been argued that presence/absence models are

less affected by this trait than models built with presence-

only data (Pearce & Ferrier, 2001).

To conclude, our results show that when predicting species

abundances from occurrence data, presence/absence models

outperformed presence/background models. If abundance or

density information is essential to advise conservation deci-

sions, such information should not be derived when reliable

absences are lacking. The use of presence-only models with

background data does not allow good predictions of local

abundances. Moreover, the impossibility of estimating the

probability of occurrence from these presence-only designs

(Hastie & Fithian, 2013) hinders the estimation of abundances

by the conversion of probabilities to animal numbers. Our

study shows that despite limitations of occurrence binary data

(presence/absence) to predict precise local abundances, these

local predictions may be combined to predict unbiased aver-

age regional abundance. This is because, although accuracies

are not similar across species, overestimations and underesti-

mations compensate each other within each species.

It is highly surprising that the procedure revisited here

designed by Gerrard & Chiang (1970) to convert local proba-

bilities of occurrence into numbers of individuals has rarely

been used with vertebrates (but see Teller�ıa & S�aez-Royuela,

1986), considering that the accuracy of the predictions is

very high as it has been demonstrated in this study and pre-

viously with arthropods (e.g. Gerrard & Chiang, 1970;

Badenhausser et al., 2007; Hall et al., 2007). The only con-

cern is to avoid the ‘dangerous zone’ where the probability

of occurrence (Pi) is higher than ca. 0.9. Over this probabil-

ity, the observed and predicted abundances grow exponen-

tially, so very small changes in Pi generate very large

variations in abundance. Therefore, the obvious advice is to

define sampling protocols where the size of the sampling

unit (i.e. 0.5-km length transects in our study) produces

probabilities or frequencies of occurrence below the ‘satura-

tion point’ of 0.9 (see also Gerrard & Chiang, 1970). Further

studies with heterogeneous taxa, scales and situations will

likely reinforce the generality of this procedure.

Although obtaining good species’ absences in a random

sampling protocol is economically costly and time-consum-

ing, the costs associated with measure species’ abundances
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Figure 3 Partial residual plots illustrating the influence of the

coefficient of variation in bird numbers where they occurred (a)

and habitat breadth (b) on the accuracy of predicted average

regional densities measured as the percentage difference between

predicted and estimated regional density respect to estimated

regional density (% change in Table 1). N = 21 bird species from

La Palma Island (Canary Islands, Spain). Residual plots show the

relationship between a given independent variable and the

response given that the other independent variables in Table 2 are

also in the model, therefore partialling out their effects.
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are considerably higher and not always feasible. This study

highlights the usefulness of surrogate measures of species

abundances derived from distribution models built with

presence/absence data. This approach can be a useful tool in

applied ecology, especially when working in remote areas,

under budget restrictions or with limited qualified personnel.

As the accuracies of predicted regional densities are similar

across species, the approach is highly valuable in studies of

biodiversity that deal with a large number of species. More-

over, analyses testing the potential influence of species-speci-

fic traits on prediction accuracy should be viewed as a

valuable complement to gather further insights on the pro-

cesses involved in the interaction between the sampling

method and focus species.
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Appendix S1 Assessment of the degree of triangularity in the relationships between 
estimated local abundances and model outputs 

 

The shape of the relationships between the estimated local abundances at the transect 

level and the SODM outputs were also analysed using quantile regression models (Cade 

& Noon, 2003), in order to test for changes in the slope of local abundance vs. 

suitability or probability derived from models in different subsets of data. We estimated 

the slopes of local abundances – SODM outputs at percentiles 50% (i.e., median 

regression, tau = 0.5) and 90% (i.e., the maximum response of organisms attaining 

maximum ecological abundances; tau = 0.9). The changes of the slopes between 

percentiles 50% and 90% (btau = 0.9 – btau = 0.5) measure the unequal variation of local 

abundance with suitability or probability derived from models, indicating complex 

interactions between these two parameters that show solid, triangular, patterns instead 

of clearly linear relationships. Sequential Bonferroni adjustments were also applied to 

estimate the significance of slopes at the two selected percentiles, and the 

“triangularity” degree of the relationship between local abundances – SODM outputs, 

using BCT and MaxEnt, was tested by means of paired t-tests of the differences (btau = 

0.9 – btau = 0.5). 

We found that patterns of the relationship between estimated local abundances and 

predictions of bird distributions from both BCT and MaxEnt models were triangular 

(see Table S1 and an example with the endemic subspecies Regulus regulus 

ellenthalerae in Fig. S1): quantile slopes for percentile 90% were significantly higher 

than those for 50% both for BCT probabilities (paired t-test comparing slopes at tau = 

0.9 vs. tau = 0.5: t = 7.10, 21 species, P << 0.001) and MaxEnt suitabilities (t = 6.22, 21 

species, P << 0.001). Twenty out of 21 bird species have significant 0.9-quantile slopes 



relating estimated local abundance to BCT predictions of probability of occurrence 

(established after sequential Bonferroni’s correction for multiple P estimates); 

nevertheless, 0.9-quantile slopes for MaxEnt predictions attained the significance level 

for only 16 bird species. The triangularity of the relationship (estimated abundances – 

SDOM outputs), measured by the difference in the quantile slopes at tau = 0.9 and 0.5 

(btau = 0.9 – btau = 0.5), was not different comparing BCT and MaxEnt models (paired t-

test: t = -0.372, 21 species, P = 0.714). 

The shape of the distribution (estimated local abundance – predicted probability or 

suitability) is triangular, in such a way that lower predicted probabilities remain 

associated to lower estimated abundances, whereas higher predicted probabilities 

remain associated to a higher variation in estimated abundances (see also VanDerWal et 

al., 2009; Gutiérrez et al., 2013). Several non-exclusive potential explanations underline 

these triangular distributions. First, it may be simply the asymmetric meaning of 

presence/absence data regarding animal abundance. The absence of a species in the area 

covered by the sampling unit, if true, has a unique possible value of zero individuals; 

but the presence of a species may have a very large span of figures ranging from one to 

many individuals (Comte & Grenouillet, 2013). This concern has been previously 

acknowledged in the analysis of spatial variation of binomial response variables, with 

an overall higher variability and bias of results for binary data (McCullagh & Nelder, 

1989; Guisan & Zimmermann, 2000; Cushman & McGarigal, 2004). Second, the 

tendency of presence-absence data to derive triangular relationships with abundance 

might depend on the used resolution (see Bean et al., 2014) and the aggregation of the 

focus species. Third, the local abundance of a species cannot change above some upper 

limit set by the measured environmental predictors included in the modelling tools 

(BCT and MaxEnt in this paper), but might change below that upper limit according to 



some limiting unmeasured variables (Cade & Noon, 2003). Moreover, multiplicative 

interactions among unmeasured ecological factors might contribute to the residual 

variation in the estimated abundance when it is predicted from SDOM. Finally, there are 

limits to prediction accuracy unbeatable by methodological refinements (Seoane et al., 

2005), which are rooted on stochastic phenomena due to natural or anthropogenic 

factors (e.g., harsh weather, wildfires, hunting, poisoning), or to endogenous 

metapopulations’ cycles unreachable by coarse grained environmental predictors 

obtained from GIS. In spite of this, the averaging of local abundance estimates over 

larger spatial scales compensates those components of random variation and generates 

precise projections of animal numbers at the regional level (i.e. La Palma island; see 

Table 1 and Fig. 2 in the main text). 
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Table S1 Slopes of quantile regressions of estimated local abundances of species in 0.5-
km length transects and outputs derived from BCT (boosted classification trees; 
probability) and MaxEnt (suitability) models at percentiles 50% (tau = 0.5) and 90% 
(tau = 0.9). Significant slopes at P < 0.05 after sequential Bonferroni correction are 
shown in bold type. 

       BCT        MaxEnt 

Species tau = 0.5 tau = 0.9 tau = 0.5 tau = 0.9 
Alectoris barbara 0.00 10.72 0.00 5.23 
Anthus berthelotii 1.16 3.72 0.99 4.90 
Carduelis cannabina 1.09 7.30 0.00 0.00 
Columba bolli 3.29 6.54 3.21 9.92 
Columba junoniae 2.33 5.92 1.20 8.63 
Columba livia 0.50 2.87 0.00 2.61 
Erithacus rubecula 1.72 4.25 0.00 6.32 
Falco tinnunculus 2.37 5.03 0.00 0.00 
Fringilla coelebs 1.36 4.13 0.77 5.74 
Motacilla cinerea 2.55 5.23 0.00 8.67 
Parus caeruleus 1.11 4.00 0.00 3.47 
Phylloscopus canariensis 1.17 2.73 0.00 0.00 
Pyrrhocorax pyrrhocorax 0.41 2.69 0.00 1.06 
Regulus regulus 1.36 3.71 1.22 5.20 
Serinus canaria 0.90 2.52 0.68 3.02 
Streptopelia decaocto 0.92 8.73 0.00 9.34 
Streptopelia turtur 2.69 8.14 0.00 0.00 
Sylvia atricapilla 1.18 3.34 1.30 4.24 
Sylvia conspicillata 2.77 8.30 0.00 3.56 
Sylvia melanocephala 2.18 4.45 0.00 5.75 
Turdus merula 1.20 3.17 1.35 3.87 

 

 



 

Figure S1 Shape of the relationship between estimated local abundance and predictions of 
probability of occurrence and suitability derived, respectively, from BCT and MaxEnt models. 
The panels show the relationships for the endemic subspecies Regulus regulus ellenthalerae. 



Regression lines show the quantile regressions for tau = 0.5 and tau = 0.9. n = 437 sample units 
(0.5-km length transects). 

Appendix S2 

Table S2 Species-specific characteristics describing the distribution-abundance patterns of 21 
terrestrial bird species in La Palma island. PREV: prevalence of each species in the sample of 
437 line transects; CV%: coefficient of variation in bird numbers in transects where each species 
occurred; p: ratio of main belt (25 m) to total belt observations of each bird species (larger 
figures correspond to less detectable species); HB: habitat breadth considering 11 different 
habitats; MASS: body mass of species (in log); DMAX: maximum density recorded in 11 
different habitats. Data for DMAX and HB obtained from Appendix B of Seoane et al. (2011). 

 

  PREV CV% p HB DMAX MASS 

Alectoris barbara 0.05 45.1 0.39 0.31 3.5 480.0 

Anthus berthelotii 0.17 89.8 0.42 0.20 64.5 16.5 

Carduelis cannabina 0.04 136.5 0.23 0.26 16.3 17.6 

Columba bolli 0.06 61.8 0.59 0.14 58.3 286.0 

Columba junoniae 0.10 73.0 0.59 0.27 42.9 328.7 

Columba livia 0.33 133.2 0.45 0.45 117.9 216.0 

Cyanistes caeruleus 0.25 71.6 0.55 0.46 29.2 11.3 

Erithacus rubecula 0.19 66.5 0.61 0.30 60.6 16.7 

Falco tinnunculus 0.19 30.1 0.22 0.73 3.6 174.5 

Fringilla coelebs 0.25 79.1 0.63 0.29 112.0 23.0 

Motacilla cinerea 0.08 50.0 0.53 0.29 12.5 18.0 

Phylloscopus canariensis 0.90 68.5 0.47 0.74 248.1 7.7 

Pyrrhocorax pyrrhocorax 0.14 167.1 0.32 0.40 21.6 321.5 

Regulus regulus 0.31 66.0 0.89 0.34 146.5 5.8 

Serinus canaria 0.50 96.6 0.52 0.52 124.8 15.3 

Streptopelia decaocto 0.08 96.8 0.73 0.17 54.3 196.0 

Streptopelia turtur 0.07 53.3 0.57 0.52 6.4 125.0 

Sylvia atricapilla 0.39 66.1 0.42 0.51 48.4 22.3 

Sylvia conspicillata 0.07 51.8 0.51 0.22 11.6 9.5 

Sylvia melanocephala 0.19 59.6 0.60 0.27 52.5 11.2 

Turdus merula 0.54 77.3 0.49 0.55 130.2 86.1 

 

 

 


