Global data sets are essential in macroecological studies. File formats of the few available data sets of freshwater ecosystems, however, are either incompatible with most macroecological software packages, incomplete, or of coarse spatial resolutions. We integrated more than 460 million geographical coordinates for freshwater habitats in the FRWater data set, partitioned into seven different habitats (lentic, wetlands, reservoirs, small rivers, large rivers, small ditches, large ditches, large channels, small drains and large drains) in ModestR (http://www.ipez.es/ModestR). A comprehensive collection of geospatial rasters was assembled, one for each of the seven freshwater habitats, with the area in km2 occupied by each habitat presented in cells of 5 arc-minute resolution. The utility of FRWater was evaluated using hierarchical partitioning via the identification of the contribution of the seven different freshwater habitats to both species richness and rarity. To this end, we used a data set of 836,123 geographical records of the 16,216 species of freshwater fishes recognized as valid by systematists at the end of 2014. Areas in North America and Europe are the most detailed in the FRWater data set, evidencing the higher quality of data sources in those regions. The number of geographical coordinates is much lower for Africa, Asia, Australia, and South America where many water bodies remain unmapped. In light of the variation in information quality at continental levels, we performed and present comparative analyses for Europe versus South America at local (5′ × 5′ grid cells) and regional (5° × 5° grid cells) scales. The relative contribution of small rivers to both species richness and rarity was highest under almost all analyses, followed by lentic habitats and large rivers. The areas of different habitats moreover explained a relatively high proportion of the observed variance in geographic rarity. Our findings corroborate previous findings that the greater contribution of small rivers to species richness is probably due to these habitats promoting geographical rarity. Hence, species richness is favored by the isolation resultant from, and the refuges associated with, small river basins and via the diversification processes promoted by such isolation.

Keywords: freshwater habitats; freshwater fishes; species richness; rarity

*Corresponding author. Email: castor@uvigo.es

© 2015 Taylor & Francis

Introduction

Macroecology searches for generalized patterns over broad spatial and temporal scales (Gaston and Blackburn 2000). As such it is highly dependent on the availability of reliable global scientific data sets to detect patterns and identify the probable causal factors most likely controlling species abundance and distribution and, hence, species richness.

The last two decades have seen the development of multiple global databases applicable to environmental and ecological questions as a consequence of the growing availability of global satellite data, vast improvements in data processing and storage capabilities, and enhanced data access through online servers and web portals (Hastings et al. 1991, Graham et al. 2004, UNEP 2012). The wide use of global data sets facilitated the growth of macroecological studies, particularly the development of species distribution model applications (Alroy 2003, Robinson et al. 2011), notwithstanding limitations such as incomplete and fragmented data and geographic bias (Bedia et al. 2013, Thorson et al. 2014). Available information in global data sets, nonetheless, remains primarily restricted to terrestrial and marine rather than freshwater ecosystems.

The area represented by different freshwater habitats may be an important factor affecting not only freshwater aquatic species but also terrestrial ones; however, detailed global geographic information on freshwater habitats is very scarce. HYDRO1k is a global geographic database including streams and drainage basins data derived from the USGS 30 arc-second digital elevation model of the world (US Geological Survey 2000). Another global product based on digital elevation data is HydroSHEDS, which provides different geo-referenced data sets at various scales, such as river networks, watershed boundaries, drainage directions, and flow accumulations (Lehner et al. 2008, Lehner and Grill 2013). Lehner and Döll (2004) proposed the development of a global database of lakes, reservoirs, and wetlands by developing a Geographic Information System (GIS) combining the best currently available data sources. The Global Water System Project Digital Water Atlas, in turn, compiles data from different sources to create a set of annotated maps, such as the global distribution of large water reservoirs and dams (Lehner et al. 2011). Another global database of freshwater habitats is Natural Earth (www.naturalearthdata.com), a collection of vector and raster maps that includes river, lake, and reservoir data at three different spatial scales. Arbault et al. (2014), in turn, collected data from different sources to develop a global database of rivers and streams with a focus on energy-level evaluation for those systems. Other freshwater resource data sets are available at national, regional, or local scales from government and/or nonpublic institutions, such as the Australian Hydrological Geospatial Fabric (Geofabric, http://www.bom.gov.au/water/geofabric/index.shtml).

Unfortunately, several impediments hinder the application of all these aforementioned data sets in macroecological studies. First, the conversion of the data sets to file formats compatible with modeling software is rarely straightforward. Second, data assembly is usually challenging and time-consuming since the databases use different structures at varying spatial resolutions. Finally, data sets are commonly incomplete and of coarse spatial resolution.

The aim of this study is to present a new global data set of freshwater habitats (FRWater), which is integrated into ModestR, a powerful software aimed at working
with species distribution maps and taxonomic data (García-Roselló et al. 2013). FRWater is available at a spatial resolution of 5 arc-minutes in the ASCII raster format used by many species distribution modeling packages, such as Garp (http://www.nhm.ku.edu/desktopgarp) and MaxEnt (https://www.cs.princeton.edu/~schapire/maxent).

The main advantage of FRWater compared to other freshwater global geographic data sets is that users can utilize the tools and facilities available in ModestR to manage and analyze information about species distributions within FRWater without the necessity of data assembly and/or pre-processing. Other strengths of FRWater are its global coverage, refined spatial resolution (1 arc-second), and its discrimination among seven different types of freshwater aquatic habitats.

Large-scale variables associated with the variation of species richness have been widely studied in the case of freshwater fish species (e.g., Pelayo-Villamil et al. 2015). However, the relative contribution of different aquatic habitats to species richness is usually not incorporated in global assessments. Herein we show the utility of FRWater to determine the contribution of the different freshwater habitats to explain the global variation in the species richness and rarity of freshwater fish species.

Methods

FRWater data set

Geographic data for the creation of FRWater were taken from OpenStreetMap, a free collaborative mapping project (http://www.openstreetmap.org). OpenStreetMap was selected as the data source for three primary reasons. First, data are available under the Open Database License, and users are thus allowed to freely share, modify, and use the database. Second, it provides global coverage, integrating geospatial data from different sources with data continuously improved and updated through user contributors. Finally, it uses a topological data structure with four core elements and a tagging system that simplifies the identification of water features.

The FRWater data set provides a collection of lines and polygons showing the geographic borders of freshwater habitats. Seven different types of freshwater habitats are included in the data set, with a division of some habitats into small and large categories (Table 1). Small water features such as small rivers, channels, ditches, and drains are depicted as lines, while all other freshwater habitat types are represented by polygons (Table 1). Subsequently during data rasterization, small water features are rasterized to the minimum resolution of 1 arc-second. Note that the ground area covered by 1 arc-second is latitude-dependent. Thus, polygons are water bodies with an area larger than approximately 955 m² at the equator, but only slightly larger than 100 m² near the poles. This discrepancy is subsequently corrected by the use of ModestR (see below). In addition to the freshwater habitats per se, the FRWater data set also includes islands within the large habitats (polygons). Therefore, island area is accounted for when determining the total area of the water body in question.

Integration of OpenStreetMap data into ModestR was a complicated process due to the different structure of the geographic information and the large volume of data (more than 460 million geographical coordinates). The process involved four steps:
The identification based on the OpenStreetMap tagging system (Table 2) and download of ways and multipolygon relations associated with freshwater habitats. A way is an ordered list of geographical coordinates describing open lines or closed polygons, while a multipolygon relation is a combination of ways that forms one or more closed polygons (see more information at http://www.openstreetmap.org). In the case of multipolygon relations, the ways defined as outer were associated with their corresponding habitat (Table 2), while inner ways were identified as islands.

(2) The download of the geographical coordinates associated with the previously identified elements and the generation of a preliminary DAT file for each way or relation, assigning to each a unique ID and the corresponding type of habitat (Table 2).

(3) The importation of the DAT files into ModestR.

(4) Rasterization to a spatial resolution of 1 arc-second.

FRWater data set was integrated into ModestR, which consists of four applications: MapMaker, a GIS environment to build and analyze species distribution maps; DataManager, which allows the management of species and taxonomic databases;

Table 1. Types of freshwater habitats included in the data set.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentic habitats</td>
<td>Polygons</td>
<td>Lakes, ponds, bogs</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>Polygons</td>
<td>Artificial and natural reservoirs</td>
</tr>
<tr>
<td>Wetlands</td>
<td>Polygons</td>
<td>Marshlands, swamps</td>
</tr>
<tr>
<td>Large rivers</td>
<td>Polygons</td>
<td>Main rivers, deltas, estuaries</td>
</tr>
<tr>
<td>Small rivers</td>
<td>Lines</td>
<td>Streams, creeks, rivulets, brooks</td>
</tr>
<tr>
<td>Large channels</td>
<td>Polygons</td>
<td>Man-made waterways for transportation; large waterways for irrigation</td>
</tr>
<tr>
<td>Small channels</td>
<td>Lines</td>
<td>removing storm water</td>
</tr>
<tr>
<td>Large ditches</td>
<td>Polygons</td>
<td>Narrow nonlined artificial waterways for draining land or industrial discharge; channelized streams</td>
</tr>
<tr>
<td>Small ditches</td>
<td>Lines</td>
<td>Removing storm water</td>
</tr>
<tr>
<td>Large drains</td>
<td>Polygons</td>
<td>Minor lined artificial waterways for carrying storm water or industrial discharge; channelized streams</td>
</tr>
<tr>
<td>Small drains</td>
<td>Lines</td>
<td>Removing storm water</td>
</tr>
</tbody>
</table>

Table 2. Habitat assigned to blocks in FRWater data set according to the tags (key-value) in OpenStreetMap.

<table>
<thead>
<tr>
<th>OpenStreetMap tag (key-value)</th>
<th>FRWater habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural – water</td>
<td>Lentic habitats</td>
</tr>
<tr>
<td>Natural – wetlands</td>
<td>Wetlands</td>
</tr>
<tr>
<td>Waterway – river</td>
<td>Large rivers (polygons)/small rivers (lines)</td>
</tr>
<tr>
<td>Waterway – riverbank</td>
<td>Large rivers (polygons)/small rivers (lines)</td>
</tr>
<tr>
<td>Waterway – stream</td>
<td>Large rivers (polygons)/small rivers (lines)</td>
</tr>
<tr>
<td>Waterway – canal</td>
<td>Large channels (polygons)/small channels (lines)</td>
</tr>
<tr>
<td>Waterway – ditch</td>
<td>Large ditches (polygons)/small ditches (lines)</td>
</tr>
<tr>
<td>Waterway – drain</td>
<td>Large drains (polygons)/small drains (lines)</td>
</tr>
<tr>
<td>Water – reservoir</td>
<td>Reservoirs</td>
</tr>
<tr>
<td>Landuse – reservoir</td>
<td>Reservoirs</td>
</tr>
</tbody>
</table>
MRFinder, a tool to find the species present in specific areas and MRMapping for building maps (http://www.ipez.es/ModestR, García-Roselló et al. 2013). ModestR with the integrated FRWater data set requires Microsoft Windows XP or a later version, a 64-bit CPU, a minimum of 4 GB of RAM memory, and 20 GB of hard-drive space. ModestR is available via mirrors in several countries to facilitate access to this large software package. Additional useful features available in the different applications of ModestR are summarized in Table 3. More details about error-checking, quality control, and quality assurance procedures are included in the supplemental data.

An example with freshwater fishes

Species distributions

The data set of geographical records for freshwater fishes developed by Pelayo-Villamil et al. (2015) was updated to reflect taxonomic changes and new species described to the end of 2014 using the menu facility of ModestR (Pelayo-Villamil et al. 2012, García-Roselló et al. 2013). The data was filtered using the data cleaning facilities available in ModestR (García-Roselló et al. 2014). These include data cleaning when downloading records from GBIF and habitat data cleaning to remove duplicates (records of the same specimen sent by different collections). Additional data cleaning involved the removal of common errors in GBIF data, e.g., records with geographic coordinates of 0° longitude and 0° latitude, and records for which the longitude and latitude values are identical and likely represent erroneous repetitive data entry. Finally, erroneous synonyms were corrected and habitat filtering was applied under which records in marine settings were considered invalid.

We did not make any distinction between native and alien species, so these were handled in comparable modes. At the end of 2014, 16,216 species of freshwater fishes were recognized as valid by systematists and are available in IPez (http://www.ipez.es, Guisande et al. 2010). Of these, 13,379 species (82.5% of the total) have associated geographical information with a total of 836,065 records.

For the analyses, we used range maps, instead of point-to-grid maps, with the range maps generated by estimating the extent of occurrence (EOO) for each species with ModestR (García-Roselló et al. 2015). To do this, we selected an α-shape procedure with an α value of 6, because global scale studies of macroecological patterns demonstrate that this simple method is a more parsimonious option for extrapolating species distributions from primary data (García-Roselló et al. 2015).

Extent of occurrence area

Once range maps have been drawn for each species, we use the following equation to calculate the EOO area of each species (probable distribution in km²) with ModestR so as to avoid the biases generated by the use of geographical coordinates:

\[
1.852 \times \frac{12,756.2\pi}{21,600} \cos \left(\text{latitude} \times \frac{\pi}{180} \right)
\]

The above equation is used for the calculation of the ground area (in km²) corresponding with an individual pixel of 1° × 1°. The value 1.852 is a nautical mile (distance of 1 minute...
<table>
<thead>
<tr>
<th>Application</th>
<th>Main features</th>
</tr>
</thead>
</table>
| MapMaker | **Expert-drawn maps**
| | Occurrence-based maps, with online access to GBIF data
| | Importation of shapefiles, KML, CSV, ASC rasters
| | Exportation of species distribution and habitat maps to high-resolution image files, shapefiles, KML, rasters
| | Cleaning facilities by discriminating between habitats using environmental-based rules and dispersal capacity
| | Estimation of AOO, extent of occurrence (by convex hull, alpha shape, or kernel density), environmental occurrence, kernel density maps, or niche of occurrence
| | Environmental layers (polar coordinates systems using several environmental variables)
| | Integration of environmental data rasters
| | Raster clipping using species presence areas or any arbitrary template |
| MRFinder | Searching for species present in specified areas, discriminating between habitats
| | Pre–post filtering species searching by taxonomy
| | Rare species and custom categories filters
| | Integrated database of predefined areas (World administrative areas and World river basins)
| | Importation/exportations of shapefiles, KML
| | Summary of environmental conditions and of the area covered (in km²), discriminating by different freshwater habitats
| | Summary of species found by specified area
| | Richness measures, latitudinal gradients, rarity index, AOO index, EOO index, patch index, and latitudinal range index in selected areas |
| DataManager | Creation of species distribution databases structured by taxonomy
| | Taxonomy importation from CSV, phyloXML or ITIS database, and exportation to CSV
| | Species distribution importation from CSV, shapefiles, Darwin core archives, probability rasters (e.g., Maxent)
| | Batch downloading of distribution data for any taxonomic rank from GBIF
| | Estimation of area covered (in km²), discriminating by different freshwater habitats
| | Estimation of the richness in selected freshwater habitats
| | Bulk species distribution data exportation to CSV, raster, Darwin core template, or high resolution image files
| | Estimation of AOO, extent of occurrence (by convex hull, alpha shape, or kernel density), and data cleaning features
| | Bulk raster clipping feature using species AOO or EOO
| | Estimation of environmental variables contribution to species presence
| | Richness measures, latitudinal gradients, rarity index, AOO index, EOO index, patch index, and latitudinal range index for any taxonomic rank |
| MRMapping | Creation of maps with multiple species distribution data
| | Drag & drop feature to add data from any ModestR database or map file
| | Distribution data grouping feature by any taxonomic rank (classes, orders, families, etc.)
| | Importation of shapefiles and KML
| | Exportation of distribution and habitat maps to high resolution image files, shapefiles, KML, rasters
| | Merging and intersection calculation between any set of species or taxonomic ranks
| | Estimation of AOO for any taxonomic rank
| | Estimation of percentage of spatial overlap between any set of species or taxonomic ranks (orders, families, species, etc.) |
of arc measured along any meridian) in km, 12,756.2 is twice the radius of the earth in km and finally 21,600 is the number of arc-minutes in a full circumference. This equation was applied to all the pixels occupied by the species using the central location of each pixel as the latitude value, and all the obtained values were finally summed to calculate the distribution area in km2.

Subsequently, we estimate the average EOO area values for all the species present in each cell (i.e., average EOO). Rare species may have a naturally restricted range within a widespread habitat, may be specialists in narrowly distributed habitats, or may have had the size of their original ranges reduced by human activity. Although concepts for considering a species as rare and methods to estimate rarity may differ (Laffan and Crisp 2003), the common factor is the use of small range sizes (Flather and Sieg 2007) and can be considered interchangeable (Kunin and Gaston 1997). In our case, a low value of the EOO index indicates the occurrence of a higher number of species with small geographic range sizes or geographical rarity (Gaston and Fuller 2009).

Statistical analyses

The contribution of each of the seven freshwater habitats to the explanation of the variation in species richness and rarity values was estimated by using a hierarchical partitioning procedure directed to alleviate the frequent multicollinarility of predictors (Chevan and Sutherland 1991), which was estimated with the hier.part function in the R software (Walsh and Mac Nally 2014). The advantage of hierarchical partitioning over stepwise-selection techniques is that hierarchical partitioning is focused on drawing inferences about the likely causality of variables, whereas stepwise-selection techniques focus on finding a single best predictive function (Mac Nally 2000). The presence of multicollinearity is, in turn, considered calculating the variance inflation factor which provides an index that measures how much the variance of an estimated regression coefficient is increased because of collinearity (Fox and Weisberg 2011). This analysis was performed with the package usdm (Naimi 2014). This technique was used to exclude, among correlated habitats, those with lower causal contributions to the dependent variable.

All scripts used for the statistical analyses are based on previous ones (Guisande et al. 2006, 2011), and the most appropriate graph for each statistical analysis was determined following Guisande and Vaamonde (2012). These scripts are integrated into the software RWizard (Guisande et al. 2014).

Integration of geographic records of the species and FRWater

ModestR previously allowed the organization of a set of different environmental variables (García-Roselló et al. 2013) and now additionally includes global geographic data for freshwater habitats (the FRWater data set). One of the purposes of this feature is to integrate the exportation of geographic records of species distributions with those of the environmental variables and/or area occupied by any of the above described freshwater habitats into grid cells of different sizes. We used the DataManager application of ModestR (García-Roselló et al. 2013) to export the species richness jointly with the data of the area occupied by each one of the considered freshwater habitats within 5’ × 5’ (local scale) and 5° × 5° (regional
scale) grid cells. In the case of rarity, the data were exported to a single grid cell size of 60′ × 60′.

Results

Table 4 summarizes the FRWater data set by habitat utilizing two parameters: area of freshwater habitat (Figure 1(a)) and number of geographical coordinates (Figure 1(b)). Seasonal water bodies or waterways without a permanent flow (geographical elements tagged as intermittent in OpenStreetMap) were also included in the analysis. Areas were computed from the rasterized map with a 1 arc-second resolution. The data set, which includes 14,685,790 blocks (lines and polygons), is composed of more than 460 million geographical coordinates. The total area of freshwater habitat is approximately 2.86 million km² (around 1.9% of total Earth land area). In terms of numbers of geographical coordinates, the small river habitat is the most abundant category of all the considered freshwater habitats (45.7%). Nonetheless, lentic habitats cover the largest area in total, encompassing more than one-half of the area (57.7%). Despite having a lower number of

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Europe</th>
<th>America</th>
<th>Africa</th>
<th>Asia</th>
<th>Oceania</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of geographic coordinates (× 10⁵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentic habitats</td>
<td>331.0</td>
<td>988.4</td>
<td>12.3</td>
<td>121.0</td>
<td>23.8</td>
<td>1476.5</td>
<td>31.98</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>10.7</td>
<td>23.3</td>
<td>1.8</td>
<td>11.2</td>
<td>0.5</td>
<td>47.5</td>
<td>1.03</td>
</tr>
<tr>
<td>Wetlands</td>
<td>87.0</td>
<td>319.3</td>
<td>5.9</td>
<td>12.2</td>
<td>4.5</td>
<td>429.0</td>
<td>9.29</td>
</tr>
<tr>
<td>Large rivers</td>
<td>128.2</td>
<td>162.2</td>
<td>12.3</td>
<td>65.2</td>
<td>6.9</td>
<td>374.8</td>
<td>8.12</td>
</tr>
<tr>
<td>Small rivers</td>
<td>378.1</td>
<td>1351.2</td>
<td>81.9</td>
<td>354.2</td>
<td>24.7</td>
<td>2190.0</td>
<td>47.45</td>
</tr>
<tr>
<td>Large channels</td>
<td>3.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>4.7</td>
<td>0.11</td>
</tr>
<tr>
<td>Small channels</td>
<td>9.0</td>
<td>10.0</td>
<td>1.4</td>
<td>8.1</td>
<td>0.3</td>
<td>28.7</td>
<td>0.62</td>
</tr>
<tr>
<td>Large ditches</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.01</td>
</tr>
<tr>
<td>Small ditches</td>
<td>18.7</td>
<td>15.7</td>
<td>1.9</td>
<td>2.7</td>
<td>0.1</td>
<td>39.1</td>
<td>0.85</td>
</tr>
<tr>
<td>Large drains</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Small drains</td>
<td>15.9</td>
<td>3.9</td>
<td>1.2</td>
<td>3.0</td>
<td>0.4</td>
<td>24.4</td>
<td>0.53</td>
</tr>
<tr>
<td>Total</td>
<td>982.4</td>
<td>2874.8</td>
<td>118.9</td>
<td>578.2</td>
<td>61.3</td>
<td>4615.5</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>21.3</td>
<td>62.3</td>
<td>2.6</td>
<td>12.5</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Area (km² × 10³)

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Europe</th>
<th>America</th>
<th>Africa</th>
<th>Asia</th>
<th>Oceania</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentic habitats</td>
<td>209.1</td>
<td>801.6</td>
<td>232.7</td>
<td>338.8</td>
<td>65.2</td>
<td>1647.4</td>
<td>57.66</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>19.7</td>
<td>86.1</td>
<td>16.5</td>
<td>39.5</td>
<td>0.9</td>
<td>162.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Wetlands</td>
<td>67.3</td>
<td>196.9</td>
<td>100.3</td>
<td>76.7</td>
<td>5.2</td>
<td>446.4</td>
<td>15.62</td>
</tr>
<tr>
<td>Large rivers</td>
<td>27.1</td>
<td>149.2</td>
<td>39.2</td>
<td>157.2</td>
<td>4.9</td>
<td>377.6</td>
<td>13.21</td>
</tr>
<tr>
<td>Small rivers</td>
<td>33.5</td>
<td>99.1</td>
<td>16.8</td>
<td>50.6</td>
<td>5.0</td>
<td>204.8</td>
<td>7.17</td>
</tr>
<tr>
<td>Large channels</td>
<td>0.4</td>
<td>0.1</td>
<td>0.04</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.024</td>
</tr>
<tr>
<td>Small channels</td>
<td>1.6</td>
<td>1.7</td>
<td>0.56</td>
<td>4.1</td>
<td>0.1</td>
<td>8.1</td>
<td>0.29</td>
</tr>
<tr>
<td>Large ditches</td>
<td>0.01</td>
<td>0.1</td>
<td>0.001</td>
<td>0.001</td>
<td>0</td>
<td>0.1</td>
<td>0.004</td>
</tr>
<tr>
<td>Small ditches</td>
<td>2.5</td>
<td>2.3</td>
<td>0.28</td>
<td>0.5</td>
<td>0.007</td>
<td>5.6</td>
<td>0.19</td>
</tr>
<tr>
<td>Large drains</td>
<td>0.01</td>
<td>0.004</td>
<td>0.0003</td>
<td>0.01</td>
<td>0.003</td>
<td>0.03</td>
<td>0.002</td>
</tr>
<tr>
<td>Small drains</td>
<td>2.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.8</td>
<td>0.1</td>
<td>3.6</td>
<td>0.13</td>
</tr>
<tr>
<td>Total</td>
<td>363.2</td>
<td>1337.5</td>
<td>406.6</td>
<td>668.4</td>
<td>81.4</td>
<td>2857.2</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>12.7</td>
<td>46.8</td>
<td>14.2</td>
<td>23.4</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
coordinates, the lentic, wetland, and large river habitats each also have greater individual total areas than does the small river habitat which covers only 7.2% of the total area. Remarkably, reservoirs cover 5.7% of the total area, despite involving less than 1% of the coordinates. It is critical to note that in so far as the small
habitats (channels, ditches, drains, and rivers) are lines, it is impossible to estimate their areas to the same accuracy as the polygons (large habitats). Therefore, the reported summary areas in km2 for small habitats should be taken with caution.

It is also important to emphasize that the available FRWater data set must be considered provisional because many water bodies in some regions of the World remain unmapped. Thus, information quality varies among areas. Areas in North America and Europe (Figure 2(a) and (b)) are overall the most detailed, evidencing a higher data source quality, whereas in Africa (Figure 2(c)), Asia (Figure 2(d)), Australia, and South America, the numbers of geographical coordinates are much lower. Moreover, some regions have patchy data quality with areas with a greater volume of data proximate to areas with lesser data. Most such patches are in Canada, where some areas lacking information are surrounded by areas with high numbers of geographical coordinates. Conversely, there is also a large patch with high numbers of coordinates in central South America (see Figure 1) that is surrounded by a large area with more limited data. Presumably additional data gathering will allow many areas in South America to look like this patch in some future version of FRWater.

Considering the unequal quality and detail of the available maps for freshwater habitats, we examine the predictive capacity of these habitats on species richness for two contrasting continental areas: Europe and South America. The freshwater habitat with the highest contribution to species richness, in South America at both local ($5' \times 5'$) and regional ($5^\circ \times 5^\circ$) scales and in Europe at local scale ($5' \times 5'$), was small

Figure 2. Examples of maps showing the freshwater habitats available in the FRWater data set for four geographical areas: (a) southern Finland, (b) Newfoundland region of Canada, (c) central East Africa, and (d) Southwestern China. Maps were obtained by exporting JGP files with MapMaker (García-Roselló et al. 2013). The ModestR menu offers the user the option to specify a specific color for each of the different freshwater habitats and to show all or just a selection of habitats.
rivers followed by lentic and/or large river habitats (Figure 3). The contributions of large and small rivers were similar in Europe and at the regional scale (5° × 5°). A stepwise multiple regression showed that the percentage of variance explained by freshwater habitats was relatively low, particularly in South America, at the local scale but larger at the regional scale.

Due to the lack of important differences in the relative contribution of the habitats to species richness at differing scales, in the analysis of rarity, we studied only a grid size cell of 60’ × 60’. Small rivers were also the habitat with the highest contribution to rarity in both continents (Figure 4). It is important, however, to highlight that freshwater habitats explained a relatively high proportion of the variance observed in the EOO index, 53% in Europe and 58% in South America.

Discussion

Factors affecting geographical rarity in freshwater fishes are unknown because rarity is poorly predicted by climatic and/or productivity variables (Pelayo-Villamil et al. 2015). This supports the hypothesis that nonclimatic or nonenergetic factors, such as geographical isolation, could have influenced the distribution of freshwater fish rarity (Hubert and Renno 2006, Leprieur et al. 2011, Dias et al. 2013, Griffiths et al. 2014). Our study demonstrated that one of these factors is the type of freshwater habitat, given that freshwater habitats explained a relatively high proportion of the observed variance in rarity.

Leaving aside the misleading apparent differences resulting from non-natural factors (e.g., different intensities of research focused on freshwater systems in various geographical areas, Pelayo-Villamil et al. 2015), it is well known that a limited number of climatic and productivity variables account for species richness among freshwater fishes (Tedesco et al. 2005, 2012, Oberdorff et al. 2011, Griffiths et al. 2014, Pelayo-Villamil et al. 2015). It has been hypothesized that another important factor contributing to species richness in freshwater fishes is isolation resultant from river basin boundaries and the refuge and diversification processes promoted by such isolation (Schleuter et al. 2012, Dias et al. 2013, Toussaint et al. 2014, Pelayo-Villamil et al. 2015). Our results corroborate this hypothesis, because the small river habitat is the primary contributor explaining the geographical variation of both rarity and species richness.

At broad spatial scales, biodiversity in freshwater habitats is expected to increase with area (Ricklefs 2004); a hypothesis demonstrated in freshwater fishes (Oberdorff et al. 1995, Lévêque et al. 2008). According to the Modifiable Areal Unit Problem (Fotheringham and Wong 1991), results of spatial analysis are strongly influenced by the definition of areal units, so that the effect of freshwater habitat on rarity and/or species richness might vary with scale. In studies comparing the biodiversity patterns for macrophytes and macroinvertebrates among habitats and at different scales (Williams et al. 2004, Davies et al. 2008), rivers were identified as the most species-rich habitat at the individual site level (alpha diversity), whereas ponds were found to contribute most to biodiversity at the regional level (gamma diversity). We observed, however, that regardless of spatial scale, the small river habitat was almost always that with the highest contribution to both species richness and rarity for freshwater fishes at both local and regional scales.

Available information in FRWater is presently incomplete due to the lack of hydrological data in various regions of the World. Therefore, it is not advisable to use the data set
Figure 3. Relative contribution estimated by using hierarchical partitioning, of the different freshwater habitats significantly related with species richness at local (5' × 5' grid cells) and regional (5° × 5° grid cells) scales in Europe (−25° to 40° longitude and 34° to 75° latitude) and South America (−82° to −34° longitude and −57° to 13° latitude). The regression coefficient (r^2) of the stepwise multiple regression performed to species richness as the dependent variable, and the freshwater habitats as independent variables is also shown. Dependent and independent variables are all log-transformed.
to compare areas that are well mapped with areas poorly mapped, i.e., Europe versus South America, or North America versus South America, etc. Instead, we recommend that each area be evaluated separately. Nonetheless, the available data can be productively used in macroecological studies, particularly in the data-rich regions of Europe and many portions of North America. Furthermore, in our example, we obtained similar results comparing areas that are well (Europe) and poorly mapped (South America) in terms of water bodies and demonstrated an important potential functionality of the FRWater data set. We consider that the joint use of this source of data together with the different tools provided within ModestR will facilitate the visualization and analysis of large data sets for managers, macroecologists, and biogeographers.

Acknowledgments
We thank ENDESA for technical support.

Disclosure statement
No potential conflict of interest was reported by the authors.
Funding
This work was supported by the ENDESA [110/02168].

Supplemental data
Supplemental data for this article can be accessed here.

References

Toussaint, A., et al., 2014. Historical assemblage distinctiveness and the introduction of widespread non-native species explain worldwide changes in freshwater fish taxonomic