
e c o l o g i c a l m o d e l l i n g 2 1 0 ( 2 0 0 8 ) 478–486

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

Assessing the effects of pseudo-absences on predictive
distribution model performance

Rosa M. Chefaoui, Jorge M. Lobo ∗

Dpto. de Biologı́a Evolutiva y Biodiversidad, Museo Nacional de Ciencias Naturales, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
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a b s t r a c t

Modelling species distributions with presence data from atlases, museum collections and

databases is challenging. In this paper, we compare seven procedures to generate pseudo-

absence data, which in turn are used to generate GLM-logistic regressed models when

reliable absence data are not available. We use pseudo-absences selected randomly or by

means of presence-only methods (ENFA and MDE) to model the distribution of a threatened

endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence

selection method greatly influences the percentage of explained variability, the scores of

the accuracy measures and, most importantly, the degree of constraint in the distribution

estimated. As we extract pseudo-absences from environmental regions further from the

optimum established by presence data, the models generated obtain better accuracy scores,

and over-prediction increases. When variables other than environmental ones influence the

distribution of the species (i.e., non-equilibrium state) and precise information on absences

is non-existent, the random selection of pseudo-absences or their selection from environ-
mental localities similar to those of species presence data generates the most constrained

predictive distribution maps, because pseudo-absences can be located within environmen-

tally suitable areas. This study shows that if we do not have reliable absence data, the method

of pseudo-absence selection strongly conditions the obtained model, generating different

model predictions in the gradient between potential and realized distributions.

Gu and Swihart, 2004; Segurado and Araújo, 2004). However,
1. Introduction

Reliable species distribution information on various scales
is needed for both biogeographic and conservation pur-
poses. Taking advantage of computing developments such as
databases and GIS, many different initiatives aim to compile
massive amounts of taxonomic and distribution information
(Bisby, 2000). Atlases, museum data and databases can pro-
vide information relevant to the development of prediction

maps (Dennis and Hardy, 1999; Reutter et al., 2003; Chefaoui
et al., 2005; Hortal et al., 2005). Since these heterogeneous
data sources do not indicate the locations where the species
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have not been found after a sufficiently intense collection
effort, false absences can decrease the reliability of predic-
tion models (see Anderson, 2003; Loiselle et al., 2003). Group
discrimination techniques that use presence–absence data
(Guisan and Zimmermann, 2000) seem to predict species dis-
tributions more accurately than profile techniques, which only
use presence data (Ferrier and Watson, 1997; Manel et al., 1999;
Hirzel et al., 2001; Guisan et al., 2002; Brotons et al., 2004;
group discrimination techniques are appropriate only in the
case where absence data indicate the entire area unsuitable
for the species are available. Since a quick and feasible method
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Fig. 1 – Habitat suitability maps representing the potential
distribution obtained from presence-only models. (A) Dark
grey indicates suitable area obtained from a
multi-dimensional envelope model (MDE); light grey
indicates potential area added by increasing maximum and
minimum scores 10% for each environmental variable
(Expanded-MDE). (B) Scale on the right shows different
e c o l o g i c a l m o d e l l i n

o overcome this problem is needed, the following approaches
ave been suggested: (i) randomly choosing absence points
cross all of the available territory (for example, Stockwell
nd Peters, 1999), (ii) selecting random absence points but
eighting them in favour of areas known to contain true

bsences (Zaniewski et al., 2002), and (iii) including absence
oints identified from a circular buffer area around each pres-
nce point (Hirzel et al., 2001). Since all of these methods
ay produce false absences, even in areas that are environ-
entally favourable for the species, using a profile technique

o calculate a habitat suitability map has been proposed as
way to select weighted absence points, which can subse-

uently be used with presence data in a logistic regression
rocedure (Engler et al., 2004). Absences obtained with this
ethod, “pseudo-absences”, can be considered an interme-

iate methodological approach between presence-only and
resence-absence distribution models, which are especially
seful when accurate absence data are not available.

In this study, two profile techniques were used to select
seudo-absences progressively near to the environmen-
al domain of the presences, while also selecting them
t random. Presence–absence models derived from these
seudo-absences and occurrence data from Graellsia isabelae

Graells, 1849) (Lepidoptera: Saturniidae), a protected moth
ndemic to Spain (see Fernández-Vidal, 1992), are compared
ith the purpose of showing that it is possible to achieve dif-

erently forecasted distributions depending on the method
nd the threshold used to select these pseudo-absences. The
ariation in these predictions will be subsequently related to
he ambivalent capacity of distribution predictive models to
epresent realized and potential species distributions (sensu
venning and Skov, 2004).

. Methods

.1. Study area and biological data

he area considered was mainland Spain and the Balearic
slands. Since this species has an eastern Iberian distribution,
e assume that our study area included most of the suit-

ble habitat area for this species. The studied area comprised
98,150 km2 divided into 5270 cells of 10 km × 10 km, to which
iological and environmental data are referred.

G. isabelae, a sedentary and non-gregarious caterpillar, lives
n pine forests and has five developmental stages. From June to
ugust, the larvae feed before metamorphosizing into pupae.
ince G. isabelae is a conspicuous and well-known species

adults are beautiful and exhibit marked sexual dimorphism),
ccurrence records can be considered reliable.

Species-presence data were mainly obtained from a distri-
ution atlas (Galante and Verdú, 2000), as well as unpublished
ata from the Valencia region (Baixeras, 2001; J. Baix-
ras, personal communication, 2004) and other bibliographic
eferences (Viejo, 1992; Garcı́a-Barros and Herranz, 2001;
ópez-Sebastián et al., 2002). Because species data came from

iverse sources and some references were old (since 1849),
ll data were checked by comparing their locations with the
istribution of pinewoods to eliminate possible outliers. As a
esult, six presence data points were discarded. A total of 136
habitat suitability (HS) scores obtained from an ENFA model
with the same environmental variables.

presence data points with a spatial resolution of 100 km2 (UTM
cells) were considered (see Fig. 1).

2.2. Predictor variables

The explanatory variables used in the preparation of dis-
tribution models (Table 1) come from different sources and
have been set up with the aid of IDRISI Kilimanjaro soft-
ware (Clark Labs, 2003). Topographic variables, elevation and
slope were extracted from a global DEM with a 1 km spatial
resolution (Clark Labs, 2000). Aspect diversity was calcu-
lated by means of the Shannon Index, which estimated the
aspect variation in all 1-km pixels composing each 100 km2

cell. Temperature and precipitation data were provided by
the Spanish Instituto Nacional de Meteorologı́a. Aridity was
calculated as: Ia = 1/((P/T) + 10) × 102, where P is the mean

annual precipitation and T is the mean annual temperature
(see Verdú and Galante, 2002). In addition, four lithological
variables were digitized from a lithological map (Instituto
Geográfico and Nacional., 1995). The resulting polygon vec-
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Table 1 – Explanatory variables used to generate the
distribution models

Predictor variables Minimum–
maximum

values

Environmental variables
Mean elevation (m) 0–2722
Aspect diversity 0–16
Slope (◦) 0–46
Summer precipitation (July, August and

September) (mm)
6.6–472

Annual precipitation (mm) 178–2201
Aridity 0–1.64
Minimum annual temperature (◦C) −3.6 to 14.3
Maximum annual temperature (◦C) 9.1–24.9
Area with acidic stony soils (km2) 0–100
Area with calcareous stony soils (km2) 0–100
Area with acidic sediments (km2) 0–100
Area with calcareous sediments (km2) 0–100

Spatial variables (in UTM coordinates)
Latitude (Y) 3990000–4860000
Longitude (X) −20000 to 1060058
Spatial variables were used only with presence–absence GLM mod-
els.

tor layers were rasterized at 1 km2 resolution, and the areas
of calcareous deposits, siliceous sediments, stony acidic
soils and calcareous soils were subsequently calculated for
each cell. These variables were included to incorporate the
basic–acidic nature of the soils and their hardness, variables
that can be relevant to explain plant species distribution. The
third-degree polynomial of the central latitude (Lat) and lon-
gitude (Lon) of each grid cell (Trend Surface Analysis; see
Legendre and Legendre, 1998) was included after the environ-
mental variables in order to determine if it helped explain
anything more about the species distribution (see Lobo et
al., 2006). All continuous independent variables were refer-
enced to the same 10 km × 10 km UTM grid square as species
data. Predictor environment variables were standardized to
0 mean and 1 standard deviation to eliminate the effect of
varying measurement scales. Finally, latitude and longitude
were standardized in the same way as the environmental
variables.

2.3. Presence-only models

We used Multi-Dimensional Niche Envelope (MDE; Busby,
1991; Lobo et al., 2006) and Ecological Niche Factor Analy-
sis (ENFA; Hirzel et al., 2002) to elaborate the presence-only
models. These models were generated from the presence data
(n = 136) and the information from 12 environmental predictor
variables (Table 1). For the MDE model, maximum and min-
imum scores for all environmental variables from presence
cells were used to select the suitable grid squares, with envi-
ronment scores falling within that range. Thus, the generally
appropriate environmental conditions for the species were

established according to the environmental conditions of the
observed presence points. In the Expanded-MDE, this range
was expanded by 10% to guarantee that absences selected
were environmentally distant from presence localities. MDE
2 1 0 ( 2 0 0 8 ) 478–486

and Expanded-MDE were generated in EXCEL spreadsheets,
while binary maps were elaborated with IDRISI Kilimanjaro.

ENFA was performed using BIOMAPPER 3.1 software (Hirzel
et al., 2004). The ENFA modelling technique (similar to Prin-
ciple Component Analysis in that it generates orthogonal
axes) computes a group of uncorrelated factors with ecological
meaning (marginality and specialization), summarizing the
main environmental gradients in the region considered. Habi-
tat suitability (HS) is modelled using the selected factors to
estimate the ecogeographic degree of similarity between each
grid square and the environmental preferences of the species;
that is, this method estimates the probability that a given
cell belongs to the environmental domain of the presence
observations. The resulting habitat suitability map has scores
(HS values) that vary from 0 (minimum habitat suitability)
to 100 (maximum). The predictor variables were normalized
through a Box-Cox transformation (Sokal and Rohlf, 1981),
and a “distance geometric-mean” algorithm, which provides
a good generalization of the niche (Hirzel and Arlettaz, 2003),
was chosen to perform the analyses.

2.4. Pseudo-absences

Identifying unsuitable habitats by profile techniques enables
us to produce reliable pseudo-absences for presence–absence
modelling. Previous results (A. Jiménez-Valverde, J.M. Lobo, J.
Hortal, unpublished data) clearly demonstrate that it is neces-
sary to use as much good absence data as possible, especially
when dealing with small numbers of presences, to correctly
classify the absence zone (see also Thuiller et al., 2004). How-
ever, to avoid biases caused by the inclusion of an extremely
high number of absences (King and Zeng, 2000; Dixon et al.,
2005), we selected 10 times more absences than presences
(1360) from each model. To compare the effect of obtain-
ing pseudo-absences with each method, we also randomly
selected absences from all regions excepting occurrence cells.
Seven groups of pseudo-absences were obtained: one at ran-
dom, one from MDE, one from Expanded-MDE and four from
ENFA. From the ENFA model, the sets were extracted accord-
ing to four different habitat suitability (HS) thresholds: HS ≤ 10
(ENFA-10), HS ≤ 20 (ENFA-20), HS ≤ 30 (ENFA-30) and HS ≤ 40
(ENFA-40). The upper limit of the selected HS threshold was
established as the mean HS score of presences (67) minus its
standard deviation (26).

2.5. Presence–absence models

The 136 presence data points and each set of 1360 pseudo-
absences were subsequently analyzed with the stepwise
logistic regression method using Generalized Linear Mod-
els (GLM). GLM are an extension of classic linear regression
models that allow for analysis of non-linear effects among
variables and non-normal distributions of the independent
variables (McCullagh and Nelder, 1989). The relationship
between the dependent and the explanatory variables (the link
function) is logit, and a binomial distribution of the dependent

variable was assumed for this analysis.

The species presence–absence data for each of the
10 km × 10 km UTM cells were first compared to linear,
quadratic and cubic functions of each environmental vari-
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ble in order to account for possible curvilinear relationships
Austin, 1980). Next, a model using all environmental variables
as built, adding the variables sequentially, in order of their

stimated importance (i.e., in a forward–backward stepwise
rocedure). Lastly, the third-degree polynomial of the central

atitude and longitude of each cell was included in the model
TSA) to account for spatial variation due to historic, biotic
r environmental factors otherwise not directly considered
y this analysis (Legendre and Legendre, 1998). Backwards-
tepwise regression, with 9 terms of the equation used as
redictor variables, removed insignificant spatial terms. Sig-
ificant terms (p < 0.05) were retained and included in the final
nvironmental model. Including spatial variables after envi-
onmental ones partially prevented the model from accurately
epresenting ecological niches but allowed us to increase
he explanatory capacity of the model by incorporating
nconsidered non-environmental factors. The STATISTICA
.0 package (StatSoft Inc., 2001) was used for all statistical
omputations.

.6. Validation and cut-off threshold

he Receiver Operating Characteristic (ROC; Zweig and
ampbell, 1993; Schröder, 2004) was used to measure per-

ormance of the models. A ROC curve is a plot of sensitivity
ratio of correctly classified positives to the total number
f positive cases) versus 1 − specificity (false positive rate)
t all possible thresholds of presence–absence classification.
he area under the ROC function (AUC), independent of the
resence–absence threshold (Fielding, 2002), is widely used
s a measure of model prediction accuracy. An AUC value of
.5, from a possible range of 0–1, indicates that prediction of
pecies presence–absence does not deviate from that of a ran-
om assignment, while an AUC score of 1 indicates perfect
resence–absence prediction. Prediction maps were also com-
ared by calculating sensitivity and specificity (percentages of
orrectly predicted presences and absences).

To compare observed and predicted maps, a cut-off point
s needed to transform continuous probabilities obtained in
LM models to binary probabilities (i.e., presence–absence).
he sensitivity–specificity difference minimizer (Liu et al.,
005; Jiménez-Valverde and Lobo, 2006, 2007) was used to
elect this threshold due to its generally good performance.
hese three accuracy measures (AUC, sensitivity and speci-
city) were computed with the aid of a jackknifing procedure

see Olden et al., 2002; Engler et al., 2004). With a dataset of
observations, the model was recalculated n times, leaving

ut one observation in turn. Each one of the regression mod-
ls based on the n − 1 observations was then applied to the
xcluded observation, and these models derived predictions
or all observations, which were used again to calculate new
ensitivity, specificity and AUC jackknife-derived scores.

Since all the resulting models use pseudo-absences, both
pecificity and AUC scores estimate the degree of accuracy of
he absence information used in the model training process.

hus, a high specificity score only implies that most of the
ata considered as absence data are correctly predicted and
oes not imply a high performance in the prediction of the
nknown true absences.
0 ( 2 0 0 8 ) 478–486 481

3. Results

Habitat suitability maps from the profile modelling techniques
show remarkable differences (Fig. 1). The suitable area pre-
dicted by Expanded-MDE is 31% greater (356,700 km2) than
the area predicted by MDE (244,100 km2). The predicted area
generated by applying the four ENFA threshold-related mod-
els decreased with increases in the HS threshold; increasing
the HS threshold from 10 to 40 produces a 53% reduction in
the suitable area (Fig. 2 and Table 2). The mean ENFA habitat
suitability score values for the 136 presence data points was
67.3 ± 25.6 (S.D.) with HS scores oscillating between 5 and 100;
52 presence points had very high suitability scores (HS > 75), 45
had high suitability scores (75 ≥ HS > 50), 33 had low suitabil-
ity scores (50 ≥ HS > 25), and 6 had very low suitability scores
(HS ≤ 25).

Five to seven predictor variables were selected in the seven
final GLM logistic models (p ≤ 0.05), highlighting the relevance
of some explanatory variables in all models: mean elevation,
summer precipitation and aridity (not shown). Spatial vari-
ables added after environmental ones only slightly improved
the explanatory capacity of the models (around 1% of total
variability), except the model in which pseudo-absences were
selected at random (around 5% of added variability). Final GLM
models in which pseudo-absences were selected by a profile
technique accounted for a high percentage of total explained
deviance (from 87.6% to 97.6%, see Table 3), while GLM mod-
els with pseudo-absences selected at random had a lower
explanatory capacity (around 68% of total deviance). In gen-
eral, models using absence data further away environmentally
from the presence data possessed a higher explanatory capac-
ity (Table 3).

All of the models that used pseudo-absences selected by
profile techniques had impressive sensitivity, specificity and
AUC scores (mean ± 95% confidence interval: 0.9792 ± 0.0123,
0.9843 ± 0.0126 and 0.9952 ± 0.0066, respectively), which were
significantly higher than those obtained by selecting pseudo-
absences at random (Table 3). Jackknife estimates of the three
accuracy measures showed that the model results were highly
stable: they differed by less than 2% of the estimates obtained
using all the observations (Table 3). As with the explained
percent deviance, models that used absence data that where
environmentally further away from the presence data also had
higher accuracy scores (Table 3).

After selecting the threshold value, continuous GLM prob-
ability maps were converted to binomial distributions (Fig. 2).
The restrictive character of GLM versus profile techniques
is evident; a suitable area generated by GLM models was
smaller than that derived from profile-techniques (from 31%
to 48% smaller; see Table 2). The GLM model performed using
pseudo-absences derived from Expanded-MDE was the one
that generated wider forecasted areas. Interestingly, in the
case of ENFA-derived GLM models, the estimated species dis-
tribution area decreased with gradual increases in the habitat
suitability threshold used to discern pseudo-absences. More-

over, when pseudo-absence data were randomly selected, the
predicted species distribution area was almost 40% smaller
than the most restricted distribution area estimated using
pseudo-absences derived from profile techniques (Table 2 and
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Fig. 2 – Obtained distribution maps from logistic GLM mode
which vary in the threshold applied to select probable absen

Fig. 3). This reduction in the predicted area always followed

a well-defined geographical pattern; cells in the northwestern
corner of the study area, where the species has never been col-
lected, disappeared gradually from the potential distribution
area.

Table 2 – Predicted suitable and unsuitable areas of distribution
techniques (ENFA and MDE) and suitable area predicted by the
different thresholds from the profile techniques or randomly (s

MDE Expanded-MDE EN

Unsuitable area estimated
by the profile technique

282,900 170,300 14

Suitable area estimated by
the profile technique

244,100 356,700 38

Suitable area estimated by
the GLM model

132,300 245,400 19

Values are expressed in km2.
ing pseudo-absences derived from profile techniques,
oints (see Section 2).
4. Discussion

In this study, selecting pseudo-absences appears to be a
good strategy to make GLM modelling possible when true

for Graellsia isabelae in Spain according to the two profile
logistic GLM models from selected pseudo-absences at
ee Section 2)

FA-10 ENFA-20 ENFA-30 ENFA-40 Random

4,800 243,700 311,600 347,600 -

2,200 283,300 215,400 179,400 -

9,200 159,600 121,200 113,200 68,400
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Table 3 – Comparison of the GLM models obtained from pseudo-absences generated at random and from two profile
techniques (ENFA and MDE) at different threshold scores (see Section 2)

Method of pseudo-absence
selection

Deviance Explained
deviance (%)

Sensitivity Specificity AUC

MDE
Environmental 69.61 94.48
Environmental + TSA 64.43 94.89 0.9779 (0.9619) 0.9816 (0.9711) 0.9990 (0.9824)

Expanded-MDE
Environmental 42.29 96.65
Environmental + TSA 42.29 96.65 0.9708 (0.9632) 0.9956 (0.9956) 0.9831 (0.9794)

ENFA-10
Environmental 35.62 97.17
Environmental + TSA 30.33 97.59 0.9926 (0.9779) 0.9941 (0.9765) 0.9998 (0.9910)

ENFA-20
Environmental 55.64 95.59
Environmental + TSA 45.53 96.39 0.9926 (0.9779) 0.9926 (0.9779) 0.9988 (0.9909)

ENFA-30
Environmental 115.26 90.87
Environmental + TSA 109.74 91.31 0.9779 (0.9632) 0.9764 (0.9633) 0.9961 (0.9896)

ENFA-40
Environmental 171.14 86.45
Environmental + TSA 156.08 87.64 0.9632 (0.9559) 0.9654 (0.9573) 0.9942 (0.9851)

Random
Environmental 467.22 63.01
Environmental + TSA 406.86 67.79 0.8970 (0.8823) 0.8970 (0.8860) 0.9599 (0.9505)

GLM models were built by including environment and environment + spatial (TSA) variables. The percentage of correctly predicted presences
(sensitivity) and absences (specificity), as well as the area under the ROC function (AUC) are measurements derived from the confusion matrix

curac
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a
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to estimate model prediction accuracy. The average scores of these ac
procedure in which all the regression models based on the n − 1 obse

bsence data are not available. Taking into account that an
UC value > 0.90 is qualified as outstanding (Hosmer and
emeshow, 2000), our validation results for all the pseudo-
bsence selection approaches are excellent. Engler et al.

2004) show that GLM models using ENFA-weighted pseudo-
bsences provide significantly better results than those that
se randomly chosen pseudo-absences or profile techniques

ig. 3 – Obtained distribution map from logistic GLM model
sing randomly selected pseudo-absences. Dots represent

he observed distribution of Graellsia isabelae.
y measures are showed in brackets after accomplishing a Jackknifing
ns were calculated and the model applied to that excluded one.

such as ENFA alone, due mainly to the tendency of profile
techniques to over-predict species distributions. In agreement
with Engler et al. (2004), we find that this strategy provides
a way to enhance the quality of GLM-based potential dis-
tribution maps. In our case, the GLM model derived from
pseudo-absences extracted from cells with an ENFA habitat
suitability score equal to or lower than 20 (ENFA-10 and ENFA-
20) seems to be the most accurate, although Expanded-MDE
pseudo-absence selection also provides rather good validation
results. However, the profile method used and the environ-
mental limits defined when selecting pseudo-absences greatly
influences the percentage of explained variability, the scores
of the accuracy measures and, most importantly, the degree
of constraint on the distribution estimated.

In the case of G. isabelae, where presence data occur in
the eastern territory, GLM spatial predictions exclude the Ebro
Valley and other areas of low elevation. However, in the west-
ern area, where the species has not been observed, the lack
of reliable absence data causes high variability in the pre-
dictions; the models tend to expand the suitable area for
this species to the northwestern Iberian corner. Presence-
only methods always generate wider potential distributional
areas than GLM models derived from pseudo-absences. More-
over, those strategies in which pseudo-absences were selected

from a smaller area environmentally distant from the opti-
mum established by the presence data (Expanded-MDE and
ENFA-10) generate final GLM models that explain a higher
percentage of total variability, have higher accuracy scores
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and wider distributions. Conversely, the profile techniques
that generate wider unsuitable areas, such as MDE, ENFA-
30 and ENFA-40, produce functions with lower percentages
of explained deviance and poorer accuracy scores, but more
restricted predictive distribution maps, similar to the observed
distribution. The random selection of pseudo-absences gener-
ates the most constrained predictive distribution map because
all absence data are included, even those data located within
environmentally favourable areas.

Only an appropriate selection of presence and absence
locations can guarantee the reliability of distribution model
predictions. First, however, we must determine whether we
would like to produce a distributional range closer to the
potential or closer to the realized distribution. Species dis-
tributions should be considered abstractions of a dynamic
reality. We can be interested in providing a distributional
hypothesis able to reflect all the environmental suitable
places in which a species can occur according to a group of
environmental variables (the potential distribution). Profile
techniques such as MDE and ENFA estimate the distribu-
tion of the species considering the environmental information
of the localities in which the species has been observed,
generating wide suitable distributions; this is because these
techniques cannot incorporate the absence information on
the climatically suitable localities in which the species does
not occur. Many theoretical arguments and empirical stud-
ies show that it is possible to find reliable absence data in
sites with environmentally favourable conditions (Ricklefs and
Schluter, 1993; Hanski, 1998; Pulliam, 1988, 2000). Obviously,
including such absence information in predictive modelling
techniques should inevitably diminish the obtained range
size until a distributional hypothesis nearer to the realized
distribution is reached. That happens because some “a pri-
ori” favourable environmental localities are considered as
absences. Hence, only the use of reliable presence and absence
data and discrimination techniques such as GLMs allows the
production of a reliable approach to model the “real” dis-
tribution of a species; a distribution in which contingent
distribution restriction forces as historical factors, biotic inter-
actions or dispersal limitations play an effective role.

The current distribution of G. isabelae is reasonably well
known, due to its conspicuous nature. Thus, we are inclined
to believe that the lack of presence data in suitable habitat
areas in western Iberia indicates actual absence, and not a
sampling artefact. Profile techniques indicate that the poten-
tial distributional range of G. isabelae is wider than realized
in the western region. Thus, reasons other than environmen-
tal characteristics may be the cause of this non-equilibrium
state in which species do not occupy all suitable habitats
(see Austin, 2002; Guisan and Thuiller, 2005). Under equilib-
rium conditions, good absence data should always come from
locations with unfavourable environments (see, for example,
Hirzel and Arlettaz, 2003). Contrarily, in a non-equilibrium
scenario, the cells considered environmentally unfavourable
and chosen as pseudo-absences can influence the obtained
predictive functions and the difference between potential

and realized distributions (see Svenning and Skov, 2004). The
principle difficulty lies in obtaining predictive distributional
models that closely approximate the realized distribution of
species under non-equilibrium conditions; obtaining these
2 1 0 ( 2 0 0 8 ) 478–486

models causes reductions in goodness-of-fit, similar to those
caused by using MDE, ENFA-30 or ENFA-40. This response
is due to the fact that both presence and absence data
may be possible under similar environmental conditions (see
also Collingham et al., 2000). Hence, neither the coefficient
of determination, sensitivity, specificity, nor AUC scores are
appropriate measures of the performance of models if the
objective is to obtain a model under non-equilibrium con-
ditions. Selecting pseudo-absences environmentally distant
from the presences unavoidably facilitates the production of
models that over-predict presences, as well as the discrimi-
nation between presences and absences. The discrimination
ability of distribution models must be evaluated according to
the pursued purposes. Profile methods must be used if we
want to generate a hypothesis on the potential distribution.
Using discrimination methods and selecting pseudo-absences
by Expanded-MDE and ENFA-10 methods also allows us to
obtain models nearer to the potential distribution of the
species because pseudo-absences are selected from environ-
ments dissimilar to those of species presence data. On the
contrary MDE, ENFA-30 and ENFA-40 are better models to
represent the approximate range of the realized distribution.
Paradoxically, the random selection of pseudo-absences can
be a satisfactory alternative procedure to model the realized
distribution of the species, provided good absence data are not
available, because we include in the modelling process many
absences near the environmental domain of the presences.
Since there is no single way to build, evaluate and inter-
pret distribution models, it is necessary to carefully consider
the available distribution and biological information of each
species in an individualized way (Zimmermann and Kienast,
1999; Rushton et al., 2004; Soberón and Peterson, 2005). In
conclusion, as the degree of prediction over-estimation varies
with the method applied, the success that we can achieve
using correlative static models and environmental predictors
is determined by two factors: (1) the distribution equilibrium
state of the species in the analyzed region and (2) the method
used to select pseudo-absences.

How does one construct predictive models without using
variables that describe the biotic or historical factors likely to
influence the non-equilibrium, present-day distribution of the
species? The major challenges of distribution modelling are
accounting for the distributions of most species that are likely
to be in non-equilibrium states. If it is not possible to assume
that environmental factors are the unique determinants of
species distributions (Davis et al., 1998; Iverson et al., 2004;
Skov and Svenning, 2004; Thomas et al., 2004; Soberón and
Peterson, 2005), perhaps including spatial variables along with
environmental ones would help account for variability due
to non-environmental factors (Legendre and Legendre, 1998;
Lobo et al., 2004). In our case, the addition of spatial variables
after environmental ones increases the explanatory capac-
ity of the GLM models when pseudo-absences are randomly
selected or when the habitat suitability range is augmented
to select pseudo-absences. Although the additional deviance
explained by environmental + TSA models can be small, it is

important to remember that all environmental variables are
spatially structured, and that changes in the environmental
variables included in the models can cause a better recov-
ery of the spatial variability in the dependent variable. For
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xample, the inclusion of significant environmental variables
btained from the GLM model built with pseudo-absences
rom ENFA-10 in the ENFA-20, ENFA-30 and ENFA-40 mod-
ls does not noticeably reduce the explained deviance (from
5.0%, 88.8% and 82.8% to 93.4%, 84.1% and 80.5%), but the
dded percentage of variability explained by the spatial vari-
bles increases notably (7.3%, 10.0% and 13.3%, respectively).
nother promising option is to consider some geographical
ariables as predictors indirectly related to the failure of a
pecies to colonize the entire suitable territory (see Lobo et
l., 2006). That is, if one includes a measure of connectivity
etween areas, or a “distance cost” (Hortal et al., 2005), one
an quantify the dispersal effort necessary to inhabit areas
arther from the area with well-known presences, directly
ntegrating dispersal models and environmental data (Iverson
t al., 2004). When the biological, historical and physiologi-
al information necessary to describe the realized distribution
f species is lacking, our predictions should continue to be
ased on correlative statistical models in which the role
f non-environmental processes must be considered. Good
odels need good data. Thus, the elaboration of reliable sim-

lations on the realized distribution of species unavoidably
equires good absence data, as well as the inclusion of non-
nvironmental processes in the model procedure. Our study
hows that if we do not have reliable absence data the method
f pseudo-absence selection strongly conditions the obtained
odel, generating different model predictions in the gradient

etween potential and realized distributions.
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Thuiller, W., Brotons, L., Araújo, M.B., Lavorel, S., 2004. Effects of
restricting environmental range of data to project current and
future species distributions. Ecography 27, 165–172.
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